August 18, 2007

Mr. Robert Pooler
Agricultural Marketing Specialist,
National Organic Program,
USDA/AMS/TMP/NOP,
1400 Independence Ave., SW,
Room 4008-SO., Ag Stop 0268,
Washington, DC 20250.
Docket number AMS-TM-07-0062

Dear Mr. Robert Pooler,

I am writing to express my concern about the interim final rule and recommend the inclusion of Kombu seaweed (Laminaria japonica, Laminaria japonica var. ochotensis, Laminaria angustata, and Laminaria angustata var. longissima) to the section of Non-organic agricultural substances allowed in or on processed products labeled as “organic”, 205.606. I would like to request your review on Kombu seaweed as we have similar situation with Wakame seaweed (Undaria pinnatifida), which was added to 205.606 of the National List.

Please find our petition for the addition of Kombu seaweed (Laminaria japonica, Laminaria japonica var. ochotensis, Laminaria angustata, and Laminaria angustata var. longissima) to be added to the section of Non-organic agricultural substances allowed in or on processed products labeled as “organic”, 205.606.

CBI copy and CBI deleted copy are enclosed, respectively. I claim the CBI treatments, as I do not want to disclose our contracted suppliers for competitive reasons. In the case the request for CBI treatment of enclosed petition is being denied, please kindly contact me by e-mail before accepting this petition.

Thank you very much for your attention.

Sincerely,

Asuka Shiono
Mitoku Co., Ltd.
Subject: Request on Kombu seaweed (*Laminaria japonica, Laminaria japonica var. ochotensis, Laminaria angustata, and Laminaria angustata var. longissima*) for addition to the National list under 205.606

ItemA
Kombu seaweed (*Laminaria japonica, Laminaria japonica var. ochotensis, Laminaria angustata, and Laminaria angustata var. longissima*) to be added to the section of Non-organic agricultural substances allowed in or on processed products labeled as "organic", 205.606.

ItemB
1. The substance’s chemical or material common name.
 Kombu seaweed (*Laminaria japonica, Laminaria japonica var. ochotensis, Laminaria angustata, and Laminaria angustata var. longissima*)

2. The manufacturer’s or producer’s name, address, and telephone number
 (CBI Deleted)

3. A list of the types of products for which the substance will be used and a description of the substance’s function in the product.
 Currently, Kombu is used as an ingredient to make stock for Instant Miso Soup and Yuzu Ponzu. These products used to be labeled as “Organic” before 9 June 2007. Since Kombu is integral to the preparation of most Japanese traditional foods as stock, we intend to use the ingredient for our new organic Japanese cuisines in the future.

4. A list of the crop, livestock or handling activities for which the substance will be used.
 If used for handling(including processing), the substance’s mode of action must be described.
 As mentioned above, Kombu is used to make stock for Japanese traditional foods.

5. The source of the substance and a detailed description of its manufacturing or processing procedures from the basic component to the final product.
 Kombu is harvested from the ocean. After the crop is harvested, it is usually being sun-dried by the sea. In general, the preparation of stock for Japanese traditional food, dried Kombu is being boiled in water for certain amount of time, and the broth is used for many Japanese traditional
foods.

Our Instant Miso Soup manufacture purchases Kombu extracts for their product.

Production Process of Kombu extracts:
Kombu as ingredient – Extracting by hot water – Condensing- Sterilize by heating – Filtering – Inspection - Filling and Weighing – Packaging - Final Product

Yuzu shoyu manufacture purchases dried kombu and makes the Kombu extract(stock) on their own by simply boiling the dried Kombu.

6. A summary of any available previous reviews by State or private certification programs or other organizations of the petitioned substance.
Kelp is already included in the National list under 205.606 for use only as thickener and dietary supplement.

Also, Kombu itself is listed on materials list 2007 being published by Global Organic Alliance as use only as thickener and dietary supplement. http://www.goa-online.org/standards.html.

7. Information regarding EPA, FDA, and State regulatory authority registrations, including registration numbers.
To the best of petitioner’s knowledge, no such information is available.

8. The Chemical Abstract Service(CAS) number or other product numbers of the substance and labels of products that contains the petitioned substance.
To the best of petitioner’s knowledge, no CAS number or relevant information is available.

The labels of Organic Instant Miso Soups are attached (Attachment 1). Although we do not currently use these labels for NOP certified product after 9 July 2007.

For Yuzu Ponzu, no retail label is available, since it is only shipped as bulk from the manufacture.

9. The substance’s physical properties and chemical mode of action including:
 a) Chemical interactions with other substances, especially substances used in organic production;
 It is 100% natural ingredient. No chemical substance is added to the ingredient.
b) **Toxicity and environmental persistence**;
The crop is a traditional Japanese food and being included in Japanese diet for centuries. To the best of petitioner’s knowledge, it is environmentally persistent.

c) **Environmental impacts from its use and/or manufacture**;
To the best of petitioner’s knowledge, no significant environmental impacts from use and/or manufacture of Kombu.

d) **Effects on human health**;
Please refer to the Attachment 2.
Reference: SEAWEEDS KAISO by Japan Seaweed Association.

e) **Effects on soil organisms, crops, or livestock**
To the best of petitioner’s knowledge, it is not used on soil organisms, crops or livestock.

10. **Safety information about the substance including a Material Safety Data Sheet (MSDS) and a substance report from the National Institute of Environmental Health Studies.**
To the best of petitioner’s knowledge, no such information is available.

11. **Research information about the substance, which includes comprehensive substance research reviews and research bibliographies, including reviews and bibliographies which present contrasting positions to those presented by the petitioner in supporting the substance’s inclusion on or removal from the National List.** This information item should include research concerning why the substance should be permitted in the production or handling of an organic product, including the availability of organic alternatives.
General information of *Laminaria* spp. is described in Wikipedia at http://en.wikipedia.org/wiki/Laminaria

Please refer to the Attachment 3.
Reference: SEAWEEDS KAISO by Japan Seaweed Association.

As the result of search on the word “Laminaria” at USDA’s website, no relevant information which present contrasting positions to those presented by the petitioner in supporting the substance’s inclusion on or removal from the National list was found. The search result is attached as Attachment 4.
12. Petition Justification statement

- A comparative description on why the non-organic form of the substance is necessary for use in organic handling.

Kombu is integral to the preparation of most Japanese traditional foods as stock. Kombu, which is abundant in glutamic acid, makes a good stock and provides nice flavor to the food. Attached table 1 shows high glutamic acid content of Kombu species.

Mitoku has been exporting Japanese traditional foods including organic certified products (or the equivalent for the years before organic policies are established) since 1969. We would like to continue exporting organic certified Japanese traditional foods including the ones contain Kombu and increase our varieties of products in the future. Kombu stock is essential to high quality Japanese cuisines.

In the modern times, many food industries, even many households, use monosodium glutamate to replace stock made from natural ingredients such as Kombu. As a company, which wish to offer organic, natural and traditional Japanese foods to the market, we feel it is necessary for one of the most important ingredient in Japanese traditional food, Kombu, to be permitted to use in "Organic" labeled product.

Several types of fish are also common to use as stock in Japan. In this point of view, Kombu stock is beneficial to the people, who are on certain types of diet and do not eat fish or meat. Kombu, which is rich in glutamic acid, provides flavors for vegetarian dishes. Most importantly, Kombu contains important nutrients to vegetarians' diet. Kombu is a good source of a wide range of essential vitamins and minerals, including calcium, iron, iodine, and vitamins A, B1, B2, C, B6, B12, and niacin.

As the attachment 2 shows, many health benefits by eating Kombu have been reported.

- Current and historical industry information/research/evidence that explains how or why the substance cannot be obtained organically in the appropriate form, appropriate quality, and appropriate quantity to fulfill an essential function in a system of organic handling.

For the past few years, we have been contacting several Kombu suppliers to obtain organic certified Kombu to use for our organic certified products. Up to now, we have not been able to source organic certified Kombu. (Affidavit for non-availability of organic Kombu from Kombu
supplier is attached as Attachment 5). As the result of Internet search by petitioner, there was organic certified *Laminaria digitata* from the Atlantic available in powdered form.

However, our contracted instant miso soup manufacturer claims that it is necessary to use the species of Kombu they currently use in order to keep the same flavor and quality of their products. Also, the manufacture was not able to find organic certified Kombu on their search. Comment from instant miso soup manufacture is attached as Attachment 6. The manufacture reported that they use Kombu called Kushiro (place in Hokkaido Prefecture, Japan) Kombu and Hidaka (place in Hokkaido Prefecture, Japan) Kombu. Petitioner researched the distribution of Kombu species and found that Kushiro Kombu is the species of *Laminaria angustata* and *Laminaria angustata* var. *longissima*, and Hidaka Kombu is the species of *Laminaria angustata*.

Species of *Laminaria japonica*, *Laminaria japonica* var. *ochotensis*, *Laminaria angustata*, and *Laminaria angustata* var. *longissima* are known to be used for making stock. As the data for glutamic acid contents in the table 1 shows, glutamic acid contents vary according to the species and harvested region. Even among Kombu species, which are growing in Japanese seawater, there are species being known as not preferable to make stock. Each species of Kombu has different characteristics such as flavors, softness, etc. Manufactures are choosing species of Kombu, which is desirable as stock in their organic processed products.

Yuzu Ponzu manufacture claims that the use of Kombu is necessary for their Yuzu Ponzu product as the product is characterized by Kombu stock. They also were not able to find organic certified Kombu. Comment from the manufacture is attached as Attachment 7.

Petitioner intends to use organic Kombu if we could source organic certified Kombu of species *Laminaria japonica*, *Laminaria japonica* var. *ochotensis*, *Laminaria angustata*, and *Laminaria angustata* var. *longissima* are available. Petitioner and manufactures will keep searching for organic certified *Laminaria japonica*, *Laminaria japonica* var. *ochotensis*, *Laminaria angustata*, and *Laminaria angustata* var. *longissima* as we have been for the past few years. Meanwhile, we request that non-organic Kombu limited to the species of *Laminaria japonica*, *Laminaria japonica* var. *ochotensis*, *Laminaria angustata*, and *Laminaria angustata* var. *longissima* to be allowed to use for "Organic" labeled products. Alternatively, petitioner request to allow the use of Kelp as a stock in addition to Kelp used as a thickener and dietary supplement for "Organic" labeled products.

Industry information on substance non-availability of organic sources regarding
commercial availability.

The information is included in the above section.
<table>
<thead>
<tr>
<th>Growing District</th>
<th>Japanese Name</th>
<th>Scientific Name</th>
<th>Guitarmic Acid content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.840m</td>
<td>Fundamori in Hokkaido</td>
<td>Lamina japonica var. ochotensis</td>
<td></td>
</tr>
<tr>
<td>4.690m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.830m</td>
<td>Hapiamal near Hokkaido</td>
<td></td>
<td>Lamina angustata var. longissima</td>
</tr>
<tr>
<td>1.010m</td>
<td>Ochishin in Hokkaido</td>
<td></td>
<td>Lamina angustata</td>
</tr>
<tr>
<td>2.790m</td>
<td>Akushin in Hokkaido</td>
<td></td>
<td>Lamina angustata</td>
</tr>
<tr>
<td>1.890m</td>
<td>Hamana in Hokkaido</td>
<td></td>
<td>Lamina angustata</td>
</tr>
<tr>
<td>1.910m</td>
<td>Ekan</td>
<td></td>
<td>Lamina angustata</td>
</tr>
<tr>
<td>9.70m</td>
<td>Chikyue</td>
<td></td>
<td>Lamina angustata</td>
</tr>
<tr>
<td>1.560m</td>
<td>Omoe in Wakayama</td>
<td></td>
<td>Lamina japonica</td>
</tr>
<tr>
<td>2.400m</td>
<td>Omoe in Aomori</td>
<td></td>
<td>Lamina japonica</td>
</tr>
<tr>
<td>2.370m</td>
<td>Ishizaki in Hokkaido</td>
<td></td>
<td>Lamina japonica</td>
</tr>
<tr>
<td>1.740m</td>
<td>Kittono in Hokkaido</td>
<td></td>
<td>Lamina japonica</td>
</tr>
<tr>
<td>2.470m</td>
<td>Odashiro in Hokkaido</td>
<td></td>
<td>Lamina japonica</td>
</tr>
</tbody>
</table>

Reference for Culturamic acid contents & growing district of Kombu.
<table>
<thead>
<tr>
<th>Nutritional Information</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Serving Size</td>
<td>1 Cup (130g)</td>
<td></td>
</tr>
<tr>
<td>Calories</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>Total Fat</td>
<td>5g</td>
<td></td>
</tr>
<tr>
<td>Cholesterol</td>
<td>0mg</td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>520mg</td>
<td></td>
</tr>
<tr>
<td>Total Carbohydrate</td>
<td>17g</td>
<td></td>
</tr>
<tr>
<td>Sugars</td>
<td>1g</td>
<td></td>
</tr>
</tbody>
</table>

MISO SOUP

Organic with organic miso & organic seaweed

NET WT. 4.05 oz (115g) 210g
February 2, 1942

Dear Mr. President:

This is to confirm that the Philippines are still occupied and that any
smoke is coming from the Philippines. I am sending my report immediately.

Yours truly,

[Signature]

General

CHAPTER 3: Daylight Flights

A Tachmat 2
CHAPTER 4 Antibiotrophic Substances of Spermatophytes

Relationship between hyper tension and saltpetre
Figure 2 shows the effect of a drug on blood pressure. The drug is administered at time 0, and blood pressure is measured at various time points thereafter. The graph indicates a significant decrease in blood pressure after the drug is administered. The figure also shows the time course of the drug's effect on blood pressure.

More recently, several other drugs have been tested, and promising results have been observed. These drugs are currently undergoing further testing to determine their efficacy and safety for clinical use.

(8) Hypothesis new drug is effective.

In a recent study, the new drug was administered to a group of patients with hypertension. The results showed a significant reduction in blood pressure compared to the placebo group. These findings suggest that the new drug has the potential to be an effective treatment for high blood pressure.

(9) Conclusion

The results of the study indicate that the new drug is effective in lowering blood pressure. Further research is needed to confirm these findings and to determine the long-term effects of the drug. The drug has the potential to be an effective treatment for hypertension, and further studies are recommended to explore its potential applications.
CHAPTER 5: Cholesterol and Sweetened Diet
Seeds of Nicotiana tabacum were used in all experiments. The concentration of Nicotiana tabacum seeds was 10,000 seeds/L, and the concentration of tobacco extract was 100 mg/mL. The tobacco extract was prepared by extracting fresh tobacco leaves with ethanol and filtering through a 0.45-μm filter. The extract was then diluted to the desired concentration with distilled water. The plants were grown in a controlled environment with a photoperiod of 16 hours light:8 hours dark and a temperature of 25±2°C. The plants were watered with distilled water every day. The experiments were conducted under a controlled environment to minimize external variables. The results were analyzed using one-way ANOVA followed by Tukey's multiple comparison test. The data are presented as mean ± standard error. The experiments were conducted in triplicate.
cholesterol level in hypercholesterolemia blood.

(4) Why are antioxidants and their polyunsaturated used for lowering
more or less elevate the HDL level

This is achieved if may be concluded that the kid's knowledge of the polyunsaturated

observed HDL is composed of HDL high density cholesterol.

HDL: high density cholesterol, HDL: high density cholesterol.

Fig. 1: Relative level of HDL level.

HDL: high density cholesterol, HDL: high density cholesterol.

Fig. 2: Antioxidant, Antioxidant.

observed HDL is composed of HDL high density cholesterol.

HDL: high density cholesterol, HDL: high density cholesterol.

Fig. 1: Relative level of HDL level.

HDL: high density cholesterol, HDL: high density cholesterol.
A recent study showed that a decrease in the production of PAF has been observed in the treatment of cancer. The results of the study indicate that PAF levels were significantly reduced in the experimental group compared to the control group.

The reduction in PAF levels was associated with an increase in the effectiveness of cancer treatment. The study also showed that PAF levels were lower in patients who received the experimental treatment compared to those who received the control treatment.

The results of the study suggest that PAF plays a role in the development and progression of cancer. Further research is needed to understand the mechanisms by which PAF levels are reduced and how this reduction contributes to the effectiveness of cancer treatment.

References

Figures

- Figure 1: Flowchart of the experimental treatment protocol.
- Figure 2: Graph showing the decrease in PAF levels over time in the experimental group.

Tables

- Table 1: Comparison of PAF levels between the experimental and control groups.

Ch. 7 Thrombosis

1. Preserve property of PFA (1-2) in several ethane solvents.
Figure 6: Concentration of PAHs in the air at various locations

Figure 7: Changes in EPA concentration in aquatic L. japonica

Figure 8: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 9: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 10: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 11: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 12: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 13: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 14: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 15: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 16: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 17: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 18: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 19: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 20: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 21: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 22: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 23: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 24: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 25: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 26: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 27: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 28: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 29: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 30: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 31: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 32: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 33: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 34: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 35: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 36: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 37: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 38: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 39: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 40: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 41: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 42: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 43: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 44: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 45: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 46: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 47: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 48: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 49: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 50: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 51: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 52: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 53: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 54: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 55: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 56: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 57: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 58: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 59: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 60: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 61: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 62: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 63: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 64: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 65: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 66: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 67: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 68: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 69: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 70: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 71: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 72: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 73: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 74: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 75: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 76: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 77: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 78: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 79: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 80: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 81: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 82: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 83: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 84: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 85: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 86: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 87: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 88: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 89: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 90: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 91: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 92: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 93: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 94: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 95: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 96: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 97: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 98: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 99: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.

Figure 100: Changes in EPA concentration in aquatic L. japonica with hypopharyngeal parapodium in the ear.
CHAPTER 8 Diabetes

(1) Compartmentalization of insulin secretion to lower blood glucose levels of the body. The second is a more common form, where the insulin cannot cross the blood-brain barrier due to the presence of the blood-brain barrier. This results in a compartmentalization of insulin secretion, leading to a rise in blood glucose levels.

(2) Power of insulin to stimulate protein synthesis.

Table 5: Monthly variation of hemoglobin levels in different conditions (control: 12±2)
Several examples of recent experimentally using human cutting and...
(3) Antibodies}

(4) Chapter II: Antibodies
Chapter 15: Vitamins and Related Substances
Table 11: Vitamins Bg Content in Various Fruits, Vegetables, and Some Meals (2)

<table>
<thead>
<tr>
<th>Vitamin Bg</th>
<th>Various Fruits</th>
<th>Vegetables</th>
<th>Some Meals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin A</td>
<td>0.01</td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td>Vitamin B</td>
<td>0.04</td>
<td>0.06</td>
<td>0.08</td>
</tr>
<tr>
<td>Vitamin C</td>
<td>0.09</td>
<td>0.10</td>
<td>0.12</td>
</tr>
<tr>
<td>Vitamin D</td>
<td>0.13</td>
<td>0.14</td>
<td>0.15</td>
</tr>
<tr>
<td>Vitamin E</td>
<td>0.16</td>
<td>0.17</td>
<td>0.18</td>
</tr>
<tr>
<td>Vitamin K</td>
<td>0.19</td>
<td>0.20</td>
<td>0.21</td>
</tr>
</tbody>
</table>

Note: The quantities in parentheses show the content of different categories.

Legend:
- **Fruits:** Orange, Apple, Banana, etc.
- **Vegetables:** Carrot, Potato, Tomato, etc.
- **Meals:** Salad, Stir-fry, Soup, etc.
The importance of coral reefs is often underestimated, as they provide habitat for numerous species and are crucial for coastal ecosystems. Coral reefs are known for their biodiversity and are a significant contributor to the health of oceans. In recent years, coral reefs have been facing significant threats due to climate change, pollution, and overfishing. It is crucial to understand the importance of coral reefs and take necessary steps to protect them.

Fig. 1: Coral reef importance

Fig. 2: A healthy coral reef

Fig. 3: Destruction of coral reefs

Fig. 4: Coral reef biodiversity

Fig. 5: Coral reef under pressure

Fig. 6: Coral reef regeneration

Fig. 7: Coral reef sustainability

Fig. 8: Coral reef conservation

Fig. 9: Coral reef education

Fig. 10: Coral reef research

Fig. 11: Coral reef policy development

Fig. 12: Coral reef community involvement

Fig. 13: Coral reef monitoring

Fig. 14: Coral reef restoration

Fig. 15: Coral reef management

Fig. 16: Coral reef tourism

Fig. 17: Coral reef art

Fig. 18: Coral reef gift shop

Fig. 19: Coral reef newsletter

Fig. 20: Coral reef website

Fig. 21: Coral reef app

Fig. 22: Coral reef social media

Fig. 23: Coral reef festival

Fig. 24: Coral reef movie

Fig. 25: Coral reef song

Fig. 26: Coral reef poetry

Fig. 27: Coral reef story

Fig. 28: Coral reef book

Fig. 29: Coral reef painting

Fig. 30: Coral reef sculpture

Fig. 31: Coral reef installation

Fig. 32: Coral reef performance

Fig. 33: Coral reef performance

Fig. 34: Coral reef performance

Fig. 35: Coral reef performance

Fig. 36: Coral reef performance

Fig. 37: Coral reef performance

Fig. 38: Coral reef performance

Fig. 39: Coral reef performance

Fig. 40: Coral reef performance

Fig. 41: Coral reef performance

Fig. 42: Coral reef performance

Fig. 43: Coral reef performance

Fig. 44: Coral reef performance

Fig. 45: Coral reef performance

Fig. 46: Coral reef performance

Fig. 47: Coral reef performance

Fig. 48: Coral reef performance

Fig. 49: Coral reef performance

Fig. 50: Coral reef performance

Fig. 51: Coral reef performance

Fig. 52: Coral reef performance

Fig. 53: Coral reef performance

Fig. 54: Coral reef performance

Fig. 55: Coral reef performance

Fig. 56: Coral reef performance

Fig. 57: Coral reef performance

Fig. 58: Coral reef performance

Fig. 59: Coral reef performance

Fig. 60: Coral reef performance

Fig. 61: Coral reef performance

Fig. 62: Coral reef performance

Fig. 63: Coral reef performance

Fig. 64: Coral reef performance

Fig. 65: Coral reef performance

Fig. 66: Coral reef performance

Fig. 67: Coral reef performance

Fig. 68: Coral reef performance

Fig. 69: Coral reef performance

Fig. 70: Coral reef performance

Fig. 71: Coral reef performance

Fig. 72: Coral reef performance

Fig. 73: Coral reef performance

Fig. 74: Coral reef performance

Fig. 75: Coral reef performance

Fig. 76: Coral reef performance

Fig. 77: Coral reef performance

Fig. 78: Coral reef performance

Fig. 79: Coral reef performance

Fig. 80: Coral reef performance

Fig. 81: Coral reef performance

Fig. 82: Coral reef performance

Fig. 83: Coral reef performance

Fig. 84: Coral reef performance

Fig. 85: Coral reef performance

Fig. 86: Coral reef performance

Fig. 87: Coral reef performance

Fig. 88: Coral reef performance

Fig. 89: Coral reef performance

Fig. 90: Coral reef performance

Fig. 91: Coral reef performance

Fig. 92: Coral reef performance

Fig. 93: Coral reef performance

Fig. 94: Coral reef performance

Fig. 95: Coral reef performance

Fig. 96: Coral reef performance

Fig. 97: Coral reef performance

Fig. 98: Coral reef performance

Fig. 99: Coral reef performance

Fig. 100: Coral reef performance
Fig 1. A branching structure.

Fig 2. A flowering plant.

Fig 3. A flowing river.

Fig 4. A growing tree.

Fig 5. A petal in bloom.

Fig 6. A fruit in ripeness.

Fig 7. A flower in bloom.

Fig 8. A leaf in growth.

Fig 9. A stem in development.

Fig 10. A root in formation.

Fig 11. A branching pattern.

Fig 12. A flowing river system.

Fig 13. A petal in formation.

Fig 14. A fruit in ripeness.

Fig 15. A flowering plant.

Fig 16. A branching structure.
Chapter 2

Chapter 1

References

A.

V.

Chapter 1

References

A.

V.
Search

Results 1 - 5 of about 19 (0.33 seconds).

FSIS Directive 7120.1 amend 1 Change Transmittal Sheet [PDF]
...the product formulation for meat products Flavoring Agents Laminaria japonica
a flavor enhancer or Not to exceed 0.08 GRAS Notice Listed by common or...

FSIS Directive 7120.1 Amendment 1 - Safe and Suitable Ingredients ...
...Laminaria Japonica, As a flavor enhancer or flavoring agent in marine
and poultry, meat and poultry soups, gravies, and seasonings, Not to ex...www.fsis.usda.gov/OPPDE/rdad/FSISDirectives/7120.1Amend1.htm - 78
2004-01-27 - Cached

ItemDMNumber ? 3971 D flot Scanned Corporate Author Journal/Book ... [PDF]
Page 1. ItemDMNumber ? 3971 D flot Scanned Author Diaz-Colon, JD Corporate
Author Report/Article Title Selected Bibliography of the...

ReniDMHir Author Journal/BookTitle Year Color Numberof Images ? [PDF]
Page 1. ReniDMHir Author Corporate Author United States Department of
Agriculture, in cooperation Report/Article Title The Biologic...

Resin-Extractable Phosphorus, Vanadium, Calcium and Magnesium as ...[PDF]
...for haloperoxidase activity in marine brown algae: purification and characteriz
of a vanadium (V)- containing bromoperoxidase from Laminaria saccharina ...www.ars.usda.gov/SP2UserFiles/Place/36450000/Products-Reprints/2... - 2006:
Version

In order to show you the most relevant results, we have omitted some entries ver
already displayed.
If you like, you can repeat the search with the omitted results included.
Last Modified: 08/16/2007
現在、米国オーガニック基準（NOP-USA National Organic Program）において認定されているオーガニック昆布は、弊社の知る限りでは存在しておりません。

To the best of our knowledge, we hereby declare that there is no organic Kombu certified under NOP regulation.
To: Nitoro Co., Ltd.

From: [Name]

Date: 10 August 2007

Attachment:

CBI-Deleted

CBI-Peleted

Subject: Kombu and Supplier Information

Dear [Name at Nitoro Co., Ltd.],

We hope this message finds you well.

We are writing to provide you with an update regarding our Kombu production.

1. Product and Supplier

 - The Kombu used for our product is Kombu from Hidaka, Hokkaido. These varieties of Kombu are widely known for their high quality.

 - Our Kombu supplier is current available. They have been providing the equivalent of the Kombu previously used.

2. Remark

 - Kombu is currently being used under the same quality standards.

 - We have been informed that Kombu is being used under the same quality standards.

 - The Kombu used in our product is Kombu from Hidaka, Hokkaido. These varieties of Kombu are widely known for their high quality.

 - Our Kombu supplier is currently available. They have been providing the equivalent of the Kombu previously used.

Thank you for your attention to this matter.

Best regards,

[Your Name]

Nitoro Co., Ltd.
現在、米国オーガニック基準（NOP-USA National Organic Program）において認定されているオーガニック昆布は、弊社の知る限りでは存在しておりません。

To the best of our knowledge, we hereby declare that there is no organic Kombu certified under NOP regulation.
いつもお世話になっております。今回、お問い合わせの件ですが、下記の通り、ご報告申し上げます。

昆布は、コンブ科の海藻の中で古くから日本では食用やだし昆布として利用されてきました。だし昆布は日本の伝統的な食材のひとつです。それは、旨味成分である「グルタミン酸」が豊富に含まれているからです。ゆずぽん酢醤油はその旨味成分を活かした製品です。
オーガニック昆布は、弊社や仕入先の知る限りでは存在しません。
Translated to English by Mitoku(Petitioner)

17 August 2007

To. Mitoku Co., Ltd.

We will report regarding your inquiry as below.

Kombu is a kind of seaweed belongs to Laminariaceae family. Kombu has been used as food and a stock for food from old times. The stock made with Kombu is one of traditional ingredient for Japanese cuisines, because it contains abundant glutamic acid, which produces flavor. Our Yuzu Ponzu product is characterized by the flavor.

To the best knowledge of us and our Kombu supplier, Organic Kombu does not exist.