NOSB SANITIZER PANEL DISCUSSION

November 12th, 2020

Dr. Joseph Morelli

Corporate Scientist

Food & Beverage Division

ABSTRACT QUESTION 7

Hierarchy in active ingredients meeting OFPA criteria better than others

- Difficult Relative weighting of evaluation criteria vary by application
- Tradeoffs Volumes, Efficiency (ppm vs %), Safety, Environmental Fate, Compatibility

Features

- Microbial control goals
- Process/Mode of Application
- Ease of Use/Compliance
- Multi-functional Attributes

Considerations

- Efficacy/Spectrum of Kill
- Safety
- Residues
- Environmental Fate
- Material Compatibility
- Volume / Scale
- Cost

Applications

- Environmental Sanitizer
 - Food Safety
 - Livestock Biosecurity
- Food Contact Sanitizer
- Skin/Teat Antiseptic
- Water Treatment
- Food Tissue Treatment

ABSTRACT QUESTION 7

Hierarchy in active ingredients meeting OFPA criteria better than others

Illustrations

Alcohol – low volume antiseptic vs safety risk at high volume

Peroxide – favorable residue – special applications (conc. / temperature) to be effective

Chlorine Dioxide – Efficient water treatment, no THM, but not for broad surface area treatment

Organic Acids (ie Lactic Acid)/ Essential Oils – Concentration and spectrum of kill limited

UV/Vis – No residue - Application limited/ Shadow Effect

Peroxyacid – Efficient (ppm), residue favorable, vs material compatibility

Stainless steel in food process equipment vs host of materials in livestock barns

Advantages in performance and soil tolerance vs chlorine – higher use cost

ANATOMY OF CLEANERS AND SANITIZERS

Common Ingredient Classes

Various ingredient classes are employed in cleaners and sanitizers to meet functional needs

Antiseptic (Teat Disinfectant)

- Active
- Emollients
- pH Buffering
- Surfactants/ Wetting Agents
- Thickeners
- Colorants
- Film Formers

Alkaline Cleaner

- No Active
- Alkalinity
- Sequestrants
- Dispersants
- Surfactants
- Hypochlorite (Na)

Acid Cleaner

- No Active
- Acid (Mineral + Organic)
- Surfactants
- Stabilizers

General Cleaner

- No Active
- Surfactants/ foaming agents
- Builders
- pH Buffering
- Solvents
- Enzymes

Sanitizer

- Active
- pH Buffering
- Stabilizers
- Surfactants/ Foaming Agents
- Couplers

Italic – Optional ingredient depending on product/application

SYNTHETICS AND NOMENCLATURE

Awareness

Limitations of common names and CAS# to identify Food Additives/Drug Inactive Ingredients

Example of Common Surfactant

Common Names Listed	Reference
Alpha-hydro-omega-hydroxypoly(oxyethylene) poly(oxypropylene) poly (oxyethylene) block copolymer	21 CFR 178.1010 21 CFR 172.808
polyoxyethylene-polyoxypropylene block polymers	21 CFR 178.1010
Polyoxypropylene-polyoxyethylene glycol	21 CFR 176.180
Polyoxypropylene-polyoxethylene condensate	21 CFR 176.210
Ethylene glycol- propylene glycol polymer	FCN 1020
Oxirane, methyl-, polymer with oxirane	40 CFR 180.940
Poly(ethylene oxide-co-propylene oxide), block	Indirect Food Additive Database
Poloxamer	FDA Drug Inactive Database

SYNTHETICS - PRODUCER/HANDLER

Harmonization?

- In food production, common cleaners and sanitizers are used
 - CIP milking equipment (producer) and milk processing equipment (handler)
- Synthetics for sanitizers (EPA Pesticide) 205.603(e) (producer) vs 205.605 (handler)

ABSTRACT QUESTION 5

Susceptibility of Resistance Over Time for Sanitizers/Rotation

- Antibiotic resistance is global health concern
- Antibiotic vs sanitizer
 - Inside body external surfaces
 - Low dose higher conc
 - Specific vs non-specific mode of kill
- MIC Test not a proper metric for resistance of sanitizers
- Has the science demonstrated acquired resistance under real world/label use concentrations?
- Rotation: Resistance vs change in microflora that favor alternative sanitizer (bacteria/yeasts/molds)

MIC Test ▲ High organic burden ▲ 24 hours of exposure ▲ Very low concentrations ■ 0.5 – 2 ppm QACs Minimum inhibitory concentration (MIC) = lowest concentration to inhibit growth over 24 hours

AOAC 960.09

- ▲ No organic burden
- ✓ Very short contact times (≤1 minute)
- ▲ Real-world use-solution concentrations
 - 200 800 ppm QACs
- ▲ Required ≥5 log reduction to pass

QUESTIONS

