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Sulfurous Acid 
Crops 

1 
2 Focus questions requested by the National Organic Standards Board (NOSB) 
3 
4 To support the sunset review of sulfurous acid used in organic crop production, the National Organic 

Standards Board (NOSB) requested a response to a single focus question: what alternatives to sulfurous 
6 acid exist that could be used in organic crop production? We have responded to that request below. 
7 Additionally, we have provided a basic description of how alkaline soils come about in the first place, 
8 and some of their characteristics. 
9 

Background: 
11 Soil pH affects plant and microbial growth (Inamuddin et al., 2021). Some crops such as potato, sweet 
12 potato, and parsley grow better at a lower pH (5-6), while alfalfa, coconut, and dates prefer more neutral 
13 to alkaline pH (6.5-8.0) (McCall, 1980). The optimal pH range is 6.0–6.8 for most crops, although there are 
14 many plants that are outliers on either side of this range (Inamuddin et al., 2021). At the optimal pH 

range, plant nutrients are soluble and available to plants (Inamuddin et al., 2021). The high pH of alkaline 
16 soils can reduce the solubility of micronutrients like iron, zinc, boron, and manganese, and can interfere 
17 with the uptake of phosphorous (Brautigan et al., 2014; Luo et al., 2021). 
18 
19 The pH also affects the physical properties of soil. The term “hydraulic conductivity” (Ks) represents the 

ease with which water can pass through or into soil (or rock). Increasing pH decreases the conductivity 
21 (Ks) of a given soil (Ali et al., 2019). Increasing pH from 6 to 9 also increases soil degradation processes 
22 such as dispersion (breakdown of larger soil particles into smaller ones), leaving soil vulnerable to 
23 erosion (Ali et al., 2019). Sodium in particular can expand clay particles, causing them to break apart and, 
24 over time, fill pores in the soil structure. The soil then becomes too dense and compacted for plant roots 

to penetrate and utilize efficiently for nutrients, water, gas exchange, etc. (Franzen & Gerwing, 2006; 
26 Nouri et al., 2017). High soil pH can also increase the dissolution of organic matter in the soil, which can 
27 lead to higher rates of loss (Tavakkoli et al., 2022), presumably from erosion. For this and other reasons, 
28 organic matter is often limited in alkaline soils (Inamuddin et al., 2021; Tavakkoli et al., 2022). 
29 

One way to combat the effects of alkalinity on soil and nutrient properties is to increase the amount of 
31 organic carbon and bioavailable nutrients—essentially, managing the effects of alkalinity without 
32 targeting the alkalinity issue directly. However, as discussed below, increasing organic matter can in 
33 some cases also lower soil pH. 
34 

A variety of factors determine soil pH, including rainfall, the weathering of different types of rocks, 
36 atmospheric pollution, and the use of different types of fertilizers and soil amendments (Inamuddin et al., 
37 2021). One of the fundamental relationships governing soil pH is the balance of rainfall and evaporation. 
38 For example, when average rainfall exceeds the annual evapotranspiration, soil pH strongly tends to be 
39 acidic (Slessarev et al., 2016). Alkaline soils on the other hand follow the opposite trend. Globally, about 

one-third of soils are alkaline (Brautigan et al., 2014). 
41 
42 An additional factor involved in agricultural soil pH is irrigation water quality. In practice, all irrigation 
43 water contains dissolved ions which can potentially affect the soil environment (Sposito, 2008). Due to 
44 scarcity of higher-quality water sources (i.e., higher purity), producers are using marginal or low-quality 

water containing high levels of sodium and other “base cations” more frequently (Ali et al., 2019). This is 
46 especially true in arid and semiarid regions (Ali et al., 2019). Furthermore, in these regions, water tends to 
47 be used more efficiently (less is used), due to the need to conserve water (Machado & Serralheiro, 2017). 
48 This means that ions that contribute to alkalinity are even less likely to be leached out of the soil (with 
49 evapotranspiration exceeding rainfall). 

51 Base cations are of particular interest in relation to the formation of alkaline soils. Base cations include 
52 Na+, K+, Ca+ or Mg++, and are able to form carbonates and alkaline hydroxides (bases) which can 
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53 increase the soil pH (Conklin & Vitha, 2014; Brautigan et al., 2014). Because of this relationship between 
54 base cations and pH, saline soils (those with significant amounts of soluble salts), sodic soils (those with a 
55 high level of exchangeable sodium), and calcareous soils (soils containing free inorganic calcium, or 
56 “lime”) will often have an alkaline pH (i.e., greater than 7) (Sibbett, 1995). The manner in which these 
57 cations create basic conditions is as follows (Inamuddin et al., 2021): 
58 
59 Na2CO3 + H2O → 2Na+ + 2OH- + H2CO3 

61 and/or: 
62 
63 CaCO3 + 2H2O → Ca2+ + 2OH− + H2CO3 

64 
65 Sodium carbonate has a water solubility of 215 g/L at 20° C (TNO Chemistry, 2002). Calcium carbonate is 
66 much less soluble, with a water solubility of around 6.8 mg/L at 25° C (Larson et al., 1973). Because of 
67 this difference in solubility, sodium carbonate can more easily create alkaline conditions—the molecules 
68 break apart according to the equations above. As seen later with gypsum, exchanging calcium for sodium 
69 in soils can lower the pH. 

71 Conversely, as soils become more acidic, base cations become soluble and leach from the soil (NRCS, 
72 2011). Soil in humid regions is typically more acidic than in arid regions because rainfall washes off base 
73 cations from soil particles, which are replaced by H+ ions within the rainwater (Inamuddin et al., 2021). 
74 
75 Producers using soil with a pH outside of the optimal range for their respective crops sometimes use 
76 inputs to make the soil more acidic or alkaline. Calcium carbonate rocks and their derivatives such as 
77 calcium hydroxide and calcium oxide are used to “lime” or raise the pH of agricultural land that is too 
78 acidic (Crozier & Hardy, 2018). In contrast, the University of Wisconsin-Madison recommends using 
79 aluminum sulfate to decrease soil pH prior to planting acid-loving blueberries (Marsden, 2007).1 With 

that said, producers do not always need to lower soil pH to a neutral or lower level in order to 
81 successfully grow crops (Brautigan et al., 2014). Furthermore, soil pH can be highly variable within any 
82 given field. In one study, researchers sampled a number of fields using a grid pattern (Logsdon et al., 
83 2008). They found that in 40% of the fields sampled, variations within the field were 2.0 pH units. Within 
84 18% of the fields sampled, they found differences of over 2.5 pH units. 
85 
86 The behavior of carbonates in soil is important to understand because it affects how difficult it is to 
87 change pH at different ranges. Above a pH of around 8, carbonate minerals dissolve slowly, and 
88 therefore offer very little capacity to buffer acids used to change pH (Brautigan et al., 2014). When soils 
89 have a pH above 8, acidifiers are more effective at reducing pH until around 8. Below this point, 

carbonate minerals dissolve more quickly, and buffer further pH change. In highly alkaline soils, it may 
91 be more cost effective to bring soil pH down to this point (pH 8 or thereabouts), and then address any 
92 outstanding growth problems associated with high pH (such as specific nutrient deficiencies) in other 
93 ways —such as planting site-appropriate crops, or using foliar or chelated micronutrients (Brautigan et 
94 al., 2014). 
95 
96 Sulfurous acid is an acidifying agent for soil and water, neutralizing alkaline materials such as carbonates 
97 and bicarbonates (Gong, 2008; NOP, 2014). For a thorough review of sulfurous acid (the substance under 
98 review), we recommend reading the 2014 Technical Report. The original petitioner (Gong) of the 
99 substance stated that sulfurous acid: 

• Is safe to handle, even in concentrated form. 
101 • Is environmentally safe, when used properly. 
102 • Contributes bisulfate ions, which help to keep irrigation systems clean, due to their biocidal 
103 properties. 
104 • Is cost effective, relative to its acidifying power. 

1 Aluminum sulfate is a synthetic substance that is not allowed for use in organic crop production. 
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The following sections describe the few materials and strategies commonly used to adjust soil pH in 
organic crop production. All of these materials and strategies have limitations. For example, acids (like 
those produced from sulfur or organic/pyroligneous acids) can be neutralized by buffers (Brautigan et 
al., 2014; Qadir et al., 2005). Competitive cationic substances (such as gypsum) lose effectiveness in 
reducing alkalinity at a certain pH and in certain soil types (as can acids) due to soil chemistry (Franzen & 
Gerwing, 2006). Organic matter (especially compost) can improve soil so that other strategies are more 
effective, and organic matter can in some cases be beneficial for lowering pH on its own (Leogrande & 
Vitti, 2019). Phytoremediation (use of plants to rehabilitate soil) can also help lower levels of alkaline 
cations, like sodium, which are problematic in some alkaline soils, but this practice requires careful 
management. 

The use of high-quality water (or use practices that improve water quality) so that secondary salinity 
(salinity developed due to human causes, as opposed to soil parent materials) does not develop in soils 
and contribute to alkalinity in the first place is another method for managing soil pH. This may not 
always be practical, however. 

In general, lowering pH is a slow process (Vossen, n.d.). Most of the strategies described here to lower pH 
are dependent on the specific soil chemistry at the given location. Because of this difficult reality, 
producers most likely need multiple strategies to address alkaline soils. Due to the chemistry of alkaline 
soils described throughout this report, it is challenging (and expensive) to lower the pH below 8.5–8.0, 
even in good circumstances. Soils that are naturally high in carbonates may be difficult to maintain at a 
lower pH, because the parent material for the soil will continue to weather and produce more carbonate, 
buffering any attempts to change the pH over the long term (Extension Foundation & Cooperative 
Extension, 2019). For each unit of calcium carbonate in soil, it would take an equal amount of acid to 
neutralize it. At one percent calcite, a one-acre field, 12 inches deep would contain around 40,000 pounds 
of carbonate (Cardon, n.d.). Soils in Utah, for example, contain between 15–40% calcium carbonate, 
making acidification on any scale impractical (Cardon, n.d.). In many cases, other strategies may need to 
be employed, such as treating micronutrient deficiencies that result from high soil pH and growing 
tolerant crops. 

1. What alternatives to sulfurous acid exist that could be used in organic crop production? 

Elemental sulfur and derivatives 
While elemental sulfur is used to make sulfurous acid, it is not the same material. It is listed separately as 
a plant or soil amendment at 7 CFR 205.601(j). Elemental sulfur is a commonly referenced material used 
for lowering soil pH (Logsdon et al., 2008; Sibbett, 1995; Vossen, n.d.; Extension Foundation & 
Cooperative Extension, 2019). For example, producers prefer a pH of 6.5–7.0 for growing pecans (Sibbett, 
1995). According to older literature, elemental sulfur (allowed at § 205.601(j)(2)) is the most common 
acidifying amendment used by pecan growers to reduce the pH of alkaline calcareous soils, which often 
exceed a pH of 8. Over time, the applied sulfur is oxidized to form sulfuric acid, which acidifies the soil. 
The time necessary for doing this depends on (Sibbett, 1995): 

• sulfur particle size (smaller is faster) 
• temperature (warmer is faster) 
• moisture (wetter is faster, but not to the point of being waterlogged) 

Once elemental sulfur is applied, Thiobacillus bacteria species begin to metabolize it (Sibbett, 1995). These 
bacteria metabolize it most quickly at temperatures around 29 °C (84 °F), and only slowly at 21 °C (70 °F). 
They also do well when soil moisture is at field capacity, but not waterlogged. When sulfur is ground to 
<0.125 mm and thoroughly mixed into the soil, bacteria can convert it to sulfuric acid within one to two 
months under ideal conditions. Increasing the coarseness of the sulfur, or decreasing temperature, slows 
down the conversion and acidification process (Sibbett, 1995). 
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158 The amount of sulfur needed to change soil pH is large—on the order of hundreds to thousands of 
159 pounds per acre (see Table 1). Furthermore, inorganic calcium (lime) found in many soils can neutralize 

sulfuric acid, forming gypsum (calcium sulfate, CaSO4•2H2O), carbon dioxide, and water (Sibbett, 1995; 
161 Province of Manitoba, n.d.). This means that, in calcareous and other soils containing inorganic calcium, 
162 producers must apply larger amounts of elemental sulfur for the same change in soil pH if calcium were 
163 not present. In some cases, it may not be reasonable to acidify alkaline soils because of this (Province of 
164 Manitoba, n.d.). 
165 
166 Sulfur is relatively inexpensive, though prices are volatile. Between 2014 and 2021, the price has 
167 fluctuated dramatically between $24.4 per metric ton in 2020 (low), to $90 per metric ton in 2021, with 
168 other years in that range somewhere in between (Fernández, 2022). Sulfur and other acids can be 
169 especially useful when soils are not high in sodium (sodic). These types of soils usually can’t be 

effectively treated with other materials like gypsum. Furthermore, gypsum itself can be helpful in some 
171 types of soil for lowering pH above 8.4, especially when sufficient water can be used for leaching 
172 liberated cations (see the following section for further discussion of gypsum) (Vossen, n.d.). 
173 
174 Table 1: Elemental S (95%) needed to increase acidity of a 0.15–m layer of carbonate-free soil. Adapted 
175 from Sibbett, 1995 

Desired pH change Sand Loam Clay 
(kg/hectare, equivalent to ~0.892 pounds/acre) 

8.5 to 6.5 2287 2857 3426 
8.0 to 6.5 1368 1707 2288 
7.5 to 6.5 569 919 1149 
7.0 to 6.5 109 164 339 

176 
177 Other sulfur-based acidifying agents are available, but they are synthetic and not compliant with the 
178 National Organic Program (NOP) regulations. 
179 • Sulfuric acid. Used in some locales by injecting it in the fall into drip irrigation (Sibbett, 1995). 

• Lime-sulfur liquid (calcium polysulfide and calcium thiosulfate). It is produced by reacting 
181 calcium hydroxide with elemental sulfur (Sibbett, 1995). Lime sulfur is allowed for some uses in 
182 organic crop production (i.e., as a plant disease control and as an insecticide), but not as a soil 
183 amendment. 
184 
185 Elemental sulfur is a traditional material used in organic crop production (OMRI, 2022). 
186 
187 Gypsum 
188 Gypsum (calcium sulfate) is a material that is available in nonsynthetic (mined) and synthetic forms. In 
189 sodic (high-sodium) alkaline soils, gypsum can improve soil structure problems, and has some ability to 

reduce soil pH (Brautigan et al., 2014); however, gypsum is less effective in non-sodic soils (Vossen, n.d.). 
191 Even in some non-sodic soils, gypsum can still create small, but statistically significant differences in pH, 
192 albeit at large application rates (Tavakkoli et al., 2022). In sodic soils, gypsum not only helps lower pH, 
193 but, unlike the use of acids, it also helps exchange calcium for sodium. 
194 
195 Gypsum has complex dynamics with soil. It can be used to raise soil pH that is below 4.5, but according 
196 to Franzen & Gerwing (2006), it has limited or no effect between 4.5-8.4. Above 8.4, gypsum again can 
197 assist in lowering pH (Franzen & Gerwing, 2006). 
198 
199 Gypsum reacts with exchangeable sodium in the soil, and adds calcium (Brautigan et al., 2014; Vossen, 

n.d.). 
201 Gypsum (CaSO4•H2O) + sodic soil → calcium soil + sodium sulfate (leachable in water) 
202 
203 The action of gypsum can be thought of in two steps (see Figure 1). The first step “unlocks” sodium from 
204 cation exchange sites in the soil, through competition with calcium (Vossen, n.d.). The second step is that 
205 freed sodium ions then react with sulfate to form sodium sulfate, which can be removed through leaching 
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206 if enough water is present. As discussed previously, any free calcium (not bound to cation exchange sites) 
207 that combines with carbonate will have lower solubility than sodium carbonate. This means that calcium 
208 carbonate will react at a lower rate than sodium carbonate, forming fewer hydroxide ions that raise pH. 
209 Because gypsum primarily interacts with sodium, it typically has limited effect in soils with high pH but 
210 low sodium content (Vossen, n.d.). 
211 

212 
213 Figure 1: Reclamation of sodic soil with gypsum. 
214 
215 When the ratio of sodium relative to calcium and magnesium is high (usually measured as ESP, 
216 exchangeable sodium percentage, or SAR, sodium absorption ratio), soil particles break apart (disperse), 
217 creating dense and erodible soil that is problematic for plant growth (Franzen & Gerwing, 2006). 
218 Displacing and removing sodium using gypsum helps to decrease this ratio, allowing calcium and 
219 magnesium cations to help bind soil particles together (Franzen & Gerwing, 2006). 
220 
221 According to Tavakkoli et al. (2022), numerous studies have looked at using gypsum and incorporating 
222 organic amendments to reclaim alkaline soils. The effectiveness is enhanced when enough water is 
223 applied that salts can be leached from the root zone (Tavakkoli et al., 2022). For example, in studies using 
224 sodic soil in pots, Brautigan et al. found the following results three months after adding different 
225 amounts of gypsum: 
226 • 2 g/kg gypsum; soil pH decrease of 0.9 pH units. 
227 • 5 g/kg gypsum; decrease of 1.4 pH units. 
228 • 10 g/kg gypsum; decrease of 1.7 pH units. 
229 
230 Changes in pH can also be seen in field studies. In one field experiment occurring over two years, 
231 researchers added 0, 2.5, and 5 t/ha of gypsum to non-sodic, non-saline alkaline soils (Tavakkoli et al., 
232 2022). The researchers found that the most effective rate of gypsum application was 2.5 t/ha. While the 
233 changes in pH are seemingly small (see Table 2, below), these changes were significantly different from 
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234 controls, and were observed throughout the top 0.30 meters of soil. As discussed above, non-sodic soils 
do not respond as well to gypsum as sodic soils do. The results represent change from a single 

236 application of gypsum, over a two-year time period. 
237 
238 Table 2: Average decrease in pH units as compared with untreated soil, as measured at different soil 
239 depths. Data from Tavakkoli et al., 2022 

Application rate: Decrease in pH at 0–0.1 m 0.1–0.2 m 0.2–0.3 m 
2.5 t/ha 0.17 0.21 0.15 
5 t/ha 0.22 0.27 0.19 

241 Furthermore, relatively small changes in pH can have large impacts on soil properties (notably soil 
242 organic carbon). The application of gypsum at 2.5 t/ha and 5 t/ha lowered the amount of organic carbon 
243 that was dissolved in the soil (DOC), limiting the amount of carbon that could be lost through leaching 
244 (Tavakkoli et al., 2022). Strikingly, Tavakkoli et al. (2022) extrapolated the following for soils in Australia: 

assuming an average soil organic carbon content of 1% in surface soils, every reduction of 0.1 pH units 
246 below a pH of 9.0 could reduce the amount of DOC by 1400 kg/ha. The reduction of pH over a large area 
247 could stabilize a large amount of soil. 
248 
249 Gypsum is another traditional material used in organic crop production (OMRI, 2022). 

251 Compost, plant materials, and mixtures of organic materials 
252 The 2014 Technical Report on sulfurous acid notes that applying organic matter can impact sodic/saline 
253 soils, by improving soil structure, and critically, enhancing salt leaching (NOP, 2014). One of the issues 
254 with many alkaline soils is limited organic matter content, which leads to a lack of water-stable 

aggregates and a loss of soil porosity (Muscolo et al., 2017; Srivastava et al., 2016; Tavakkoli et al., 2022). 
256 
257 Adding composted organic matter can help reclaim alkaline soils by improving their structural stability 
258 and porosity—critical steps for leaching excess cations (Leogrande & Vitti, 2019). Organic matter also 
259 increases cation exchange capacity (CEC), allowing soils to absorb and stabilize ions that would 

otherwise cause alkalinity if free (Leogrande & Vitti, 2019). These functions are synergistic with the use of 
261 other soil amendments such as gypsum, where leaching and altering CEC is beneficial for decreasing pH. 
262 
263 As structure, porosity, hydraulic conductivity, and water holding capacity increase, bulk density and 
264 erosion decrease (Leogrande & Vitti, 2019). Since composted organic material is fundamentally more 

biologically stable than fresh organic matter, it tends to offer better effects on soil properties. In one field 
266 study, cotton gin compost was more effective than fresh poultry manure at improving bulk density and 
267 soil structural stability, when these amendments were applied at rates of 5 and 10 t/ha/year. Researchers 
268 noticed that the cotton gin compost had four times more humic acid than the fresh poultry manure. 
269 Humic acids can help improve the formation of clay-organic matter complexes (Leogrande & Vitti, 2019). 

271 Organic carbon-based amendments can not only improve the soil problems just mentioned, but also can 
272 lead to an increase in the partial pressure of CO2 within soil, which can help lower soil pH (Srivastava et 
273 al., 2016). Decomposition of organic matter leads to the formation of organic acids, which lower soil pH 
274 and dissolve carbonates (Leogrande & Vitti, 2019). 

276 In a two-year field soil study, Srivastava et al. (2016) evaluated the efficacy of vermicompost (inoculated 
277 with a microbial product), pressmud from sugar processing, and neem seed cake, mixed in a 5:5:1 ratio.2 

278 The researchers grew wheat in alkaline soil (pH 9.2) where they compared this soil amendment 
279 (designated “PFOA”) to a conventional 120 N: 60 P: 60 K fertilizer, and to a control where no treatment 

was used at all. They found that the PFOA treatment reduced the pH to an average of 8.8 compared to the 
281 control, while the conventional fertilizer caused no change. However, a 50:50 mix of the conventional 
282 fertilizer and the PFOA treatment reduced the average pH further, to 8.5. Total organic carbon (TOC) in 

2 The application rate published for this material appears to be a mistake—possibly an editing error, changing “mega” to “milli.” 
We contacted the authors for clarification but did not receive a response prior to submitting this report to the NOP. 
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283 the soil increased 181% in the 50:50 mix compared with the control, while TOC in the PFOA treatment 
284 increased by 103% after 2 years. There were other beneficial changes with the PFOA treatment, including a 
285 large increase in soil enzyme activity (representing the rate of nutrient cycling), substantial increases in 
286 chlorophyll, carotenoids, and various growth and nutrient components in wheat plants (Srivastava et al., 
287 2016). 
288 
289 In potted soil experiments, Brautigan et al. (2014) tested the effects the following materials had on 
290 lowering the pH of sodic soils: glucose, molasses, lucerne green manure, horse manure, horse manure 
291 and worms (Eisenia fetida, 100 worms per kg soil), and humus. They used these amendments at 2% of the 
292 soil weight. 
293 
294 Table 3: Effect of organic amendments on soil pH (in pots) over a 10-to-16-week period. Data compiled 
295 from Brautigan et al., 2014. 

Treatment Effect on pH 
Glucose No effect on soil pH initially. The pH decreased by 0.9 units 

between weeks 4-8. After 8-16 weeks, pH returned to pre-
amendment levels. 

Molasses Shortly after application, soil pH decreased by 0.5 units. After four 
weeks, soil pH decreased by 0.7 units, as compared with pre-
amendment levels. After 16 weeks, soils returned to pre-
amendment pH levels. 

Horse manure No significant effect on soil pH. 
Horse manure 
and worms 

Soil pH steadily decreased by 1.2 pH units over the course of this 
10-week study. 

Green manure No significant effect on soil pH. 
Humus Soil pH increased slightly (0.2 units) over the first eight weeks, then 

remained at that level. 
296 
297 In the worm study, the same quantity of worms would be difficult to replicate in field conditions. 
298 Furthermore, worm mortality was high (Brautigan et al., 2014). By the end of the study, the density of 
299 worms decreased from 100 per pot to 57. The researchers believed that the worms were contributing to 
300 the breakdown of manure and the production of acids. They also believed that the decomposition of the 
301 worm bodies likely contributed to the decrease in soil pH. 
302 
303 Adding organic matter may increase populations of acid-secreting microorganisms (Brautigan et al., 
304 2014). The authors attributed the loss of effectiveness of glucose and molasses shown in Table 3 (above) to 
305 depletion of the microbial food sources. After acid production ceases, pH levels likely increased again 
306 because of the semi-fixed pool of carbonates in the soil reacting with water and slowly re-establishing 
307 equilibrium. It is also possible that other substances (fatty acids) produced by microorganisms 
308 subsequently degraded and consumed hydrogen ions (Brautigan et al., 2014). As a caveat to the 
309 Brautigan et al. pot experiments, these results may not always translate well to field studies because of 
310 the large differences in soil volumes (more on this topic is discussed within the section, Plant-induced soil 
311 change). 
312 
313 Like elemental sulfur and gypsum, compost and plant-based soil amendments are traditional materials 
314 used in organic crop production (OMRI, 2022). 
315 
316 Plant-induced soil change (phytoremediation) 
317 In a review, Qadir et al. (2005) note that the goal of phytoremediation of sodic and saline-sodic soils is to 
318 increase the dissolution rate of low solubility calcium substances such as calcite (CaCO3). These 
319 components from dissolved calcium substances can then replace sodium at cation exchange sites within 
320 soil, freeing sodium and providing the possibility for it to be leached away. Phytoremediation shares 
321 similarities with the use of gypsum in that is uses calcium to compete with sodium in the soil, so that the 
322 sodium can be removed through leaching (Qadir et al., 2005). 
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323 
324 As shown in Figure 2 (below), plants drive the competition of calcium with sodium by increasing the 
325 partial pressure of CO2 (PCO2) in the soil via respiration in roots, and in some cases by enhancing proton 
326 release (H+) by plants such as legumes (Qadir et al., 2005). Some plants release more H+ when they are 
327 supplied with ammonium (NH4+), and release more alkaline materials when supplied with nitrate (NO3 –). 
328 This process results in a few potential dissolution reactions (see Figure 1). In non-calcareous soils, the 
329 increases in CO2 and H+ lead to a decrease in pH. In calcareous soils, the dissolution of calcite creates 
330 carbonate, which buffers H+ ions (so no net change in pH), but the carbonate does leave calcium available 
331 to displace sodium at cation exchange sites (Qadir et al., 2005). 
332 

333 
334 Figure 2: Model of how plant roots contribute to the dissolution of calcium carbonate in soils. Adapted 
335 from Qadir et al., 2005. 
336 
337 While phytoremediation may seem to be pH-neutral in some instances, ultimately decreasing the 
338 proportion of sodium in alkaline soil can improve characteristics such as hydraulic conductivity 
339 (Leogrande & Vitti, 2019). This can lead to improved drainage, which may make other strategies such as 
340 use of acids, gypsum, and leaching more effective. Decreasing the ratio of sodium to other cations can 
341 also help plants to be more successful at a given pH (Qadir et al., 2005). 
342 
343 Plants vary greatly in their ability to increase PCO2. For example, a sorghum-sudangrass hybrid produced 
344 up to 14 kPa PCO2, while cotton produces <3.6 kPa (see Table 4). 
345 
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346 Table 4: Mean values of net Na+ removal in different treatments as a function of PCO2 in a lysimeter 
347 experiment. Modified from Qadir et al., 2005 and Robbins, 1986. 

Treatment PCO2 (kPa) Net Na+ removal (mol) per lysimeter 
column (starting with 7.5 mol) 

Control 0.9–4.3 1.0 ± 0.1 
Gypsum (5 kg/m) 0.9–2.4 3.3 ± 0.3 
Manure 3.1–6.0 1.6 ± 0.2 
Cotton 3.0–3.6 1.4 ± 0.1 
Alfalfa 4.8–7.2 2.6 ± 0.2 
Sorghum-sudangrass hybrid 5.8–14.1 4.0 ± 0.3 

348 
349 Table 5: Comparison of gypsum and phytoremediation for the amelioration of sodic and saline-sodic 
350 soils. Adapted from Qadir et al., 2005. Results measured as exchangeable sodium percentage (ESP). 
351 ESP is a measure of the proportion of a soil’s cation exchange capacity that is occupied by sodium ions 
352 (decreasing ESP should improve alkaline soils). 

Treatment and crop Initial ESP Final ESP Soil texture 
Gypsum at 14 t/ha + rice–wheat 94.0 32.0 Sandy loam 
Leptochloa fusca3 (1 year) + rice– 
wheat 

94.0 44.0 Sandy loam 

Gypsum at 15.6 t/ha (no crop) 103.0 14.5 Sandy clay loam 
Leptochloa fusca grown for 1 year 103.0 24.9 Sandy clay loam 
Gypsum at 13 t/ha (no crop) 76.1 23.6 Sandy clay loam 
Leptochloa fusca grown for 15 
months 

66.4 42.0 Sandy clay loam 

Gypsum at 25 t/ha (no crop) 49.0 30.0 Loam 
Sesbania–wheat–sesbania (1 year) 49.0 28.0 Loam 
Gypsum at 14 t/ha + rice 95.0 45.0 Unknown 
Leptochloa fusca grown for 1 year 95.0 60.0 Unknown 

353 
354 The plants that are best suited to rehabilitating soils are those that can withstand saline/sodic soils and 
355 produce large amounts of biomass. Plants can store sodium in aerial plant parts, which can then be 
356 harvested and removed as well (Qadir et al., 2005). Some examples of promising phytoremediation plants 
357 include Pennisetum giganteum (giant juncao), sorghum/sudangrass hybrids, Diplachne fusca (sprangletop), 
358 and Salicornia spp. (sometimes called Halocnemum; pickleweed or glasswort) (Ahmadi et al., 2022; Hayat 
359 et al., 2020; Qadir et al., 2005). Qadir et al. (2005) note that phytoremediation can equal chemical 
360 approaches in some instances (see Table 4 and Table 5), especially soils with coarse to medium texture. 
361 However, phytoremediation is less efficient (or unsuccessful) as compared with chemicals when (Qadir et 
362 al., 2005): 
363 • crops that are not resistant to ambient soil salinity/sodicity, such as rice and wheat, are used in 
364 the rotation. 
365 • the phytoremediation period is too short, such as only one season. 
366 • insufficient water is used to leach any sodium released by phytoremediation. 
367 
368 Plant roots are capable of releasing hydrogen ions into soil, which also lowers soil pH (Brautigan et al., 
369 2014). When researchers grew lucerne, faba (fava) beans, field peas, and vetch in pots with highly alkaline 
370 soil (pH 8.7-9.6), the average pH of the soil decreased by 0.5 pH units. Within the area directly adjacent to 
371 roots (the rhizosphere), the decrease in average pH was 1.1 units. Not all plants were equal: 
372 • faba beans decreased bulk soil 0.7 pH units. 
373 • lucerne decreased bulk soil 0.6 pH units. 
374 • vetch and field pea decreased bulk soil pH by around 0.4 pH units. 
375 

3 Leptochloa fusca is also known as Diplachne fusca, or sprangletop (Calflora, 2022). 
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However, the researchers found that this effect was transient. Twelve weeks after removing the plants, 
the pH of the soil in the pots had returned to pre-modified levels (Brautigan et al., 2014). One possible 
explanation for this is that previously insoluble soil carbonates dissolved over time, returning the pH to 
previous levels. Also, as we show later, pot experiments do not translate well to field soil, probably due 
to the volume and depth of soil in fields. The effective distance that plants can acidify soil is typically 2-3 
mm from the root surface (Kuzyakov & Razavi, 2019). Brautigan et al. did not explore the role of plants in 
solubilizing calcium either. In calcareous soils, for example, pH is buffered by the dissolution of calcite 
(Qadir et al., 2005). This can subsequently allow for leaching, but the researchers would have needed to 
specifically perform additional investigations to study this effect. 

In contrast to the Brautigan et al. potted plant study, Tavakkoli et al. (2022) were unable to reproduce a 
bulk soil pH change in field soil using legumes. Tavakkoli et al. used a non-sodic soil, whereas Brautigan 
et al. (2014) used a sodic soil. However, Brautigan et al. (2014) measured not only bulk soil pH, but also 
the pH directly in the area around plant roots (rhizosphere), where they found changes in pH about twice 
that of the bulk soil in pots. Tavakkoli et al. only measured bulk field soil pH and noted that their method 
would not catch localized changes near the plant roots. The Tavakkoli et al. and Brautigan et al. 
experiments show that when soil volume is limited (such as in pots), plants appear to be able to create 
enough acid to see changes in bulk soil; however, this does not occur in the much larger volumes of field 
soil. Like Brautigan et al., Tavakkoli et al. did not explore the role of plants solubilizing calcium, and 
potentially displacing sodium from cation exchange sites within the soil. 

Another way in which plants can be used to help improve soil pH is by decreasing soil-water evaporation 
(Kumar et al., 2022). Earlier, we discussed how the occurrence of alkaline soils correlates strongly with 
the effects of rainfall and evaporation. Using cover crops (as well as mulches) can decrease evaporation 
when combined with strategies that aim to limit soil disruption—such as minimum tillage and direct seed 
drilling (Kumar et al., 2022). 

Chelated micronutrients 
One of the issues with soil pH above 7 is the availability of some nutrients, especially zinc and iron 
(Sibbett, 1995). For example, the solubility of zinc in water (which relates to mobility/bioavailability) 
decreases 100-fold with each whole number increase in pH. One strategy that growers use to grow crops 
at elevated levels of soil pH is to apply micronutrients in chelated form. Another way is to use foliar 
sprays (chelated or not). The application of plant available micronutrients does not fix the root cause 
(alkaline soil) (Sibbett, 1995). 

Souri and Hatamian (2019) note that amino acid-chelated nutrients are effective in helping plants meet 
nutrient requirements in alkaline and calcareous soils. Chelation creates stable, chemical bonds that 
protect metal micronutrients from reactions that might otherwise cause them to oxidize, precipitate, or 
become immobilized (Lehman, 1963; Liu et al., 2012). Unlike some other chelation agents, amino acid-
based chelates can stimulate root cells to take up the nutrients faster, and translocate them within the 
plant more quickly (Souri & Hatamian, 2019). 

Not all micronutrient chelate treatments are effective in combatting the effects of high pH soil. For 
example, researchers looked at iron deficiency chlorosis in soybeans due to alkaline soils in Alabama 
(Gamble et al., 2014). While foliar and in-furrow applications of iron chelated with EDDHA 
(ethylenediamine-N,N′-bis(2-hydroxyphenylacetic acid)) increased plant yield, treatments of iron citrate 
and iron sulfate did not. 

Many chelated micronutrients are allowed in organic production (OMRI, 2022). 

Salicylic acid and silicic acid 
Several studies noted that salicylic and silicic acid are substances that could be used for alleviating 
symptoms of either alkaline or salt stress (often involving alkaline conditions) (Khan et al., 2019; Kumar 
et al., 2022; Machado & Serralheiro, 2017). Salicylic and silicic acids do not lower soil pH, but may help 
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plants tolerate alkaline soils (Khan et al., 2019). Aside from affecting nutrient solubility, alkaline soils can 
produce damaging reactive oxygen species (ROS) like hydrogen peroxide, superoxide, and hydroxyl 
radicals. Plants defend themselves from damage produced by ROS with a variety of antioxidant enzymes. 
Salicylic acid and silicic acid can stimulate the production of these enzymes (Khan et al., 2019). 

In studies using potted tomatoes, Khan et al. found that salicylic acid and silicic acid counteracted 
negative growth effects caused by alkaline conditions (pH 9), as compared with controls (pH 6). In 
beneficial ways, these substances stimulated enzyme activity in the plants, increased potassium ion (K+) 
intake, and modulated the production of other plant hormones, such as abscisic acid. In their experiments 
Khan et al. (2019) found that: 

• Without treatment, plants at higher pH exhibited smaller roots and shoots. 
• Treated plants (salicylic acid, silicic acid, and both) at pH 9 had longer root lengths than treated 

and untreated plants at pH 6. 
• Treated plants had longer and larger diameter stems at pH 9 than untreated plants at pH 6. 

Even though these materials are usually manufactured synthetically, both salicylic acid and silicic acid 
occur naturally (Davies, 2010; Law & Exley, 2011). Salicylic acid for example has long been known to exist 
in willow bark, but now is recognized to be an important plant hormone involved in plant responses to 
pathogens (Davies, 2010). Plants like horsetail (Equisetum sp.) are “biosilicifiers,” which harvest silicic acid 
from the soil and deposit it within cells as amorphous hydrated silica (Law & Exley, 2011). 

Some nonsynthetic products containing horsetail extracts are exist which are allowed for organic use; 
however most (but not all) of these products are listed as pesticides (OMRI, 2022). Manufacturers can use 
microorganisms to produce nonsynthetic salicylic acid, and some products exist that contain willow bark 
(OMRI, 2022). 

Other 
Numerous home and garden websites advocate using substances like vinegar (dilute acetic acid) to lower 
soil pH for growing blueberries. However, no published scientific literature could be found investigating 
this for crop use. 

Spent coffee grounds are similarly recommended, but again we found little published scientific research 
evaluating their effectiveness. One study noted that using spent coffee grounds at rates of 1 and 2.5% of 
soil weight did not cause any change in pH after 40 days (Cervera-Mata et al., 2021). The authors also 
found that spent coffee grounds and derivative products inhibited lettuce growth. 

Numerous studies exist that investigate pyroligneous acid (PA, wood vinegar) (Lashari et al., 2013; 
Maliang et al., 2020; Togoro, 2014), and experimentally, this material can lower soil pH. For example, 
Togoro (2014) used eucalyptus-based PA at 1%, 2%, 4%, and 8% concentrations on an oxisol soil in 
column experiments. The initial soil pH was 5.5. At 1% and 2%, no differences could be found throughout 
the soil column. However, at 4% and 8%, statistical differences occurred, with the 4% PA solution 
lowering soil pH by 0.7 units in the top 0-10 cm of the column. At 8% PA, the top 0-10 cm of the soil 
column were reduced by 0.9 pH units, and the next 10-20 cm decreased around 0.4 pH units. However, 
the amount of PA required in a field application to achieve this result would be very large. Furthermore, 
as PA functions as an acid solution (Togoro, 2014), it could lose effectiveness in the presence of buffering 
agents such as calcium or sodium carbonates (common in alkaline soils). 

Combination of strategies 
Ultimately, effective reduction of soil pH likely requires a range of approaches. For example, Kumar et al. 
(2022) in their review of 101 studies on topics including drip irrigation, fertigation system, saline-sodic 
soils, and salinization note that to restore saline-sodic soils (typically above pH 8.5), gypsum can be used 
to release calcium and displace sodium. However, irrigation should also be applied at a rate high enough 
to leach the sodium. Organic amendments including biochar, straw, green plant residues and 
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microorganisms should also be used to improve soil organic carbon, along with crop rotation and 
minimum tillage (Kumar et al., 2022). 

In another example of a multi-material approach, researchers found that adding crop wastes (orange or 
olive oil pomace, 5%) to a mixture of elemental sulfur (85%) and bentonite clay (10%; a mined substance) 
improved germination, plant height, and fruit size in potted red onion, red bean, and cayenne pepper 
plants (Muscolo et al., 2017). Three months after applying the sulfur-bentonite-orange crop waste mix 
(0.88 mg/liter of soil), the pH of the soil was 1.6 pH units lower than the control, which had no fertilizer 
applied (6.8 vs 8.4). Compared to the sulfur (90%)-bentonite (10%) mix, the sulfur-bentonite-orange crop 
waste mix was 0.8 pH units lower (Muscolo et al., 2017). The study showed that adding acidic organic 
matter (orange or olive pomace) was useful in lowering pH and improving crop performance. The 
researchers noted that adding agricultural wastes stimulated the growth of sulfur-oxidizing bacteria 
(Muscolo et al., 2017). As previously mentioned, sulfur-oxidizing bacteria convert elemental sulfur to 
sulfuric acid, and elemental sulfur is an allowed synthetic soil amendment at § 205.601(j). 
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