Cattle Grading Predictions vs. Final Outcome
FY 2011

Feeder cattle grading is performed by USDA at the time of sale as a means of standardizing and reporting on the prices received by ranchers for feeder cattle of different levels of quality. These standards allow ranchers and cattle feeders throughout the U.S. to compare feeder calf cost and value in different regions. In order to have value to cattle producers, it is paramount that the grading standards reflect true, inherent quality and performance potential of the calves after they enter the feedyard.

However, the challenge presented to USDA graders is that the standard is subjective and relies entirely on the training and experience of the graders, so that age and flesh condition of the calves at time of sale can be properly accounted for and the true genetic merit of the calves can be estimated visually. The objective of this study was to compare the actual numeric frame and muscle scores applied to feeder cattle from across the southeastern and Midwestern U.S. at the time of shipment to the feedlot to the actual final body weight and ribeye size when the cattle reached a standardized level of finish fatness. The study confirmed that the present system of Frame and Muscle scoring cattle accurately represents the vast majority of cattle in the current feedlot cattle population. The USDA feeder scoring system as implemented in the cattle evaluated in the present data set is a useful tool for estimating final body weight outcome of feeder cattle.

FINAL REPORT

Contact:
Chris D. Reinhardt (Project Director)
Associate Professor
Animal Sciences and Industry
Kansas State University
785-532-1672
cdr3@ksu.edu
Date: November 26, 2013

Final Project Report

Project Title
Cattle Grading Predictions vs. Final Outcome

Funded by
Federal State Marketing Improvement Program
United States Department of Agriculture

Principal Investigator
Chris D. Reinhardt (Project Director)
Associate Professor
Animal Sciences and Industry
Kansas State University
Manhattan, KS 66506
Phone: 785-532-1672
e-mail: cdr3@ksu.edu

Acknowledgements
We gratefully acknowledge partial funding provided under the Federal-State Marketing Improvement Program of the Agricultural Marketing Service, U.S. Department of Agriculture. We especially thank Janise Zygmont for her efforts in managing this project for USDA FSMIP. Her careful attention to detail and her responsiveness to inquiries enhanced the overall quality of this project. Finally, we also thank USDA Feeder Cattle graders and Darrell Busby of the Tri County Steer Futurity in conjunction with Iowa State University who provided valuable information and insight necessary to complete this project.

Background Problem Statement
Feeder cattle grading is performed by USDA at the time of sale as a means of standardizing and reporting on the prices received by ranchers for feeder cattle of different levels of quality. These standards allow ranchers and cattle feeders throughout the U.S. to compare feeder calf cost and value in different regions. In order to have value to cattle producers, it is paramount that the grading standards reflect true, inherent quality and performance potential of the calves after they enter the feedyard.

However, the challenge presented to USDA graders is that the standard is subjective and relies entirely on the training and experience of the graders, so that age and flesh condition of the calves at time of sale can be properly accounted for and the true genetic merit of the calves can be estimated visually. The objective of this study was to compare the actual numeric frame and muscle scores applied to feeder cattle from across the southeastern and Midwestern U.S. at the time of shipment to the feedlot to the actual final body weight and ribeye size when the cattle reached a standardized level of finish fatness.
Activities Performed and Milestones Achieved

Objectives
1. To improve the accuracy of pre-slaughter grade determinations through an analysis of beef carcass data from 23 Midwestern and Southeastern States.

Contributions of Public or Private Agency Cooperators
The Tri County Steer Futurity, directed by Darrell Busby, oversees feeding of all cattle in the program, and cattle are fed through slaughter at 18 area feedlots across southwestern Iowa. Busby ensures that grading conditions, processing, feeding, and the marketing endpoint of all cattle in the program remain consistent across time, feedlots, and groups of cattle.

Results, Conclusions, and Lessons Learned
A total of 23,057 individual steers and heifers originating from 16 different states in the Midwest and Southeast of the U.S. were fed through slaughter in 17 feedlots in southwest Iowa. Frame and Muscle Scores were evaluated and recorded for cattle either prior to leaving their state of origin or upon arrival at the feedlot. Other data collected upon arrival included initial weight and body condition score. Cattle were fed to a visually-estimated target body composition endpoint (yield grade 3). Final body weight and carcass traits (hot carcass weight, quality grade, marbling score, fat thickness, ribeye area, and KPH fat) were recorded at harvest.

Mixed model procedures were used to investigate relationships between USDA Feeder Scores (Frame Score and Muscle Score) and measures of live performance (ADG, final weight) and carcass traits (carcass weight, marbling score, and yield grade). Fixed effects in the model included either Frame Score or Muscle Score, and other potentially influential animal factors, such as initial weight, arrival body condition score, number of respiratory treatments, sex, and location of scoring. Random effects in the model included year of harvest and feedlot.

1. One interesting outcome is that the relationships between Frame Score and Muscle Score and many performance variables were affected by the location where cattle were scored: either upon arrival at the feedlots in Iowa or prior to leaving their home state in Georgia.
2. Regression equations were developed using the mixed model regression estimates for the relationship between frame score and actual final body weight, adjusted to 0.50 inches of backfat, for steers and for heifers.
 a. Final wt (kg; steers) = 26.89*frame score + 481.7; R² = 0.92
 b. Final wt (kg; heifers) = 27.18*frame score + 439.7; R² = 0.93
 c. These regressions indicate that the current frame scoring system very accurately predicts the final body weight of frame score 3.0 (the transition from medium to large frame). In comparison to the standards of 1,250 and 1,150 lb for steers and heifers, respectively, frame score 3.0 steers and heifers in the current system (adjusted to 0.50 inches back fat) weighed 1,237 and 1,146 lb, respectively.
3. The actual final weight was used to categorize cattle to theoretical small, medium, or large frame score; this calculated retrospective frame score was compared to the actual frame score assigned at the beginning of the feeding period (k = 0.01; \(P < 0.01 \)).
 a. The percentage of small frame cattle was under-predicted for both steers (0.7% predicted vs. 14.9% calculated) and heifers (0.6% predicted vs. 10.4% calculated)
 b. The percentage of medium frame cattle were under-predicted for both steers (37.3% predicted vs. 50.6% calculated) and heifers (45.7% predicted vs. 57.9% calculated)
 c. The percentage of large frame cattle was over-predicted for both steers (62.0% predicted vs. 34.6% calculated) and heifers (53.7% predicted vs. 31.7% calculated).

Conclusions

The present system of Frame and Muscle scoring cattle accurately represents the vast majority of cattle in the current feedlot cattle population.

Based on a recent assessment of the national cattle population (\(n = 2.4 \) million carcasses; Gray et al. 2012), the average carcass weight of all cattle harvested in the U.S. between November, 2010 and November, 2011 was estimated to be 816 pounds (± s.d. 96.9 lb), which translates to a live weight of 1,285 pounds (± s.d. 152.6 lb) assuming the steers and heifers in the published survey had an average dressing percent of 63.5%. The average fat thickness and marbling score of carcasses in that survey were 0.47 in. and Small49, very near the 0.50 and Small00 targets of the frame score standard.

So, although the frame score system over-predicted the percentage of large-framed cattle in the present dataset, which was accumulated over an 8 year period, it likely accurately reflects the current U.S. cattle population.

Lessons Learned

The USDA feeder scoring system as implemented in the cattle evaluated in the present data set is a useful tool for estimating final body weight outcome of feeder cattle.

Current and Future Benefits Derived from this Project

1. It is imperative that USDA graders continue to check their standard of frame score against actual animal final body weight. This analysis will give current USDA graders confidence that their current practices accurately reflect the cattle graded.
2. Beef producers must have confidence that standards applied throughout the U.S. and reported for feedlot cattle sold at various markets by USDA personnel accurately reflect
the cattle sold and the prices paid for various classes and grades of feeder cattle. The present analysis can help ensure confidence in the current feeder cattle grading system.

3. The model used in the present analysis can be used to periodically correlate feeder scores to actual live and carcass outcome of feedlot cattle to check the system for accuracy, and help make adjustments as determined necessary.

Future Research

1. It is recommended that an analysis similar to that conducted herein be conducted annually to provide an ongoing database from which to monitor accuracy of the feeder scoring system.

2. A larger study should be conducted using feedlot and carcass data from a larger subset of cattle representing cattle feeding operations from across the entire feedlot geography, to account for a broader range of genetics and production and marketing practices.

Project Beneficiaries

Targeted beneficiaries of this project included beef ranchers, stocker and feedlot operators and USDA graders and administrators of the USDA grading system. The U.S. has about 758,000 beef cow-calf operations, 90% of which have less than 100 head. Genetics determine the greatest proportion of final body weight at a given level of carcass fatness, and ranchers can benefit greatly from comparing the price received for their calves against the perceived quality of those calves, as judged by USDA graders.

The feedlot sector is comprised of more than 2,000 operations that finish cattle. The price received for finished cattle and the cost of inputs such as grain and hay are highly inflexible and largely out of the control of the operator. Therefore, the portion of ultimate feedlot profitability which is within the control of the cattle feeder is purchase price. Feedlot operators, and their customers who own feedlot cattle, must have confidence that the price they may pay for feeder cattle for a given grade of feeder cattle is equitable with that given elsewhere in the country.

Additional Information Generated by the Project

Cattle Grading Predictions vs. Final Outcome

Federal State Marketing Improvement Program
United States Department of Agriculture

Chris D. Reinhardt
Kansas State University
and
Darrell Busby
Tri-County Steer Carcass Futurity
Month of Harvest

![Bar chart showing harvest months with the highest harvest in April and May, followed by June, and then decreasing in subsequent months, with the lowest harvest in September to December.]
Month of Feedlot Arrival
Sex Class

- Steers: 16,000
- Heifers: 6,000
Summary of Analysis

• Performance and Carcass data
 – 23,057 head

• Analyzed with respect to effects of:
 – Frame Score
 – Muscle Score (adjusted)
Fat adj FinWt by Age x Sex

- Calf: Steer 1220, Heifer 1120
- Yrlng: Steer 1240, Heifer 1140
- LongYrlg: Steer 1260, Heifer 1160
Fat adj FinWt by Age x Frame

Age mattered in Small and Med, but not Large
PrCh by Age

- **Calf**: 60% PrCh, 30% NotPrCh
- **Yrlg**: 70% PrCh, 30% NotPrCh
- **LongYrlg**: 70% PrCh, 20% NotPrCh
FINAL WT BY FRAME – ALL DATA

- Few data
- "Noisy" effect

\[y = 56.219x - 253.32 \]

\[R^2 = 0.6905 \]
FINAL WT BY FRAME – TRIMMED DATA

$y = 70.35x - 299.23$

$R^2 = 0.9008$
Final BW vs Frame: Adj to 0.50” BF

Final BW (steers) = 59.148*frame score + 1059.9
R² = 0.9181 SE = 2.7

Final wt (heifers) = 59.795*frame score + 967.42
R² = 0.9277 SE = 3.8

Final BW, lb

USDA Frame size score

Heifers
Steers
Small, Med, Large Frame: Graded vs Calculated

<table>
<thead>
<tr>
<th>Small</th>
<th>Medium</th>
<th>Large</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graded</td>
<td>Calculated</td>
<td>Graded</td>
</tr>
<tr>
<td>K_{HEIFER} = 0.18</td>
<td>K_{STEER} = 0.16</td>
<td></td>
</tr>
</tbody>
</table>

Kappa:
0.01–0.20 Slight agreement; 0.21– 0.40 Fair agreement; 0.41–0.60 Moderate agreement; 0.61–0.80 Substantial agreement; 0.81–0.99 Almost perfect agreement
ADG by MS

![Bar Chart: ADG by MS (Lb/Day vs. Values)]