United States Department of Agriculture Before the Secretary of Agriculture

In re: [Docket No. 23-J-0067; AMS-DA-23-0031] Milk in the Northeast and Other Marketing Areas

Hearing beginning August 23, 2023

Testimony Presented By:

Skylar Ryll Representing Dairy Farmers of America 5001 Brittonfield Parkway East Syracuse, NY 13057

Subject: Class I and Class II Differentials

Thank you for having me today and having this hearing. I am Skylar Ryll, the Assistant Vice President of Milk Marketing Operations for Dairy Farmers of America's (DFA) Northeast Area based in East Syracuse, New York and have been employed with the cooperative for over 13 years. During this time, I have been focused on milk marketing, transportation, analytics, and overall operations of DFA in two specific geographic regions – the Western Area, covering California and Nevada, and the Northeast Area, covering 13 states from Maryland to Maine. I earned my Bachelor of Science from Cornell University, majoring in Animal Science with a focus on Agribusiness and I also hold a Master of Business Administration from Syracuse University. Prior to college, I showed registered dairy cattle around New England and worked on a dairy farm in New Hampshire.

DFA is a global, milk-marketing cooperative that includes membership and operations within the Northeast region of the United States. During 2022, DFA had 2,437 farmer-owners within its Northeast Area, and marketed approximately 12.3 billion pounds annually, with the majority pooled on Federal Order 1. Roughly 20 percent of our farmer-owner milk is picked up and delivered across the region by DFA's transportation fleet, DFA Northeast Logistics. Additionally, DFA owns and operates 14 dairy manufacturing facilities within the Northeast Area that receive raw milk to make a variety of products including, but not limited to, HTST and ESL fluid milk and milk products, cream, condensed skim, nonfat dry milk, and whole milk powder. The facilities operate as pool distributing plants, pool supply unit plants, pool supply system plants, and partially regulated plants within Federal Order 1. This facility count does not include DFA's facilities located in Sharpsville and New Wilmington, Pa. as they are

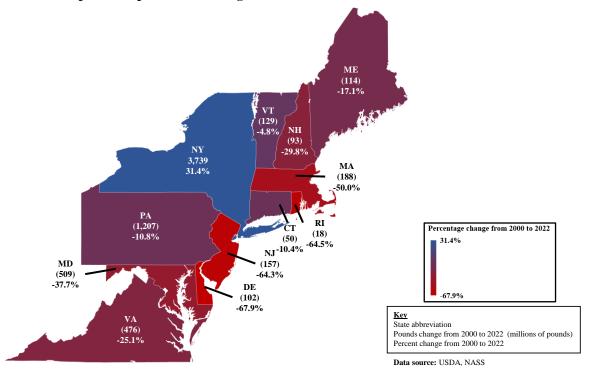
outside of DFA's Northeast Area which does not include the Western portion of Pennsylvania as it is part of DFA's Mideast Area. Additionally, there are several other plants that operate within the Northeast that do not receive raw milk but do receive milk components to make coffee beverages, ice cream, and specialty concentrates.

Today, I am testifying in support of Proposal 19, as submitted by NMPF, as included in the hearing announcement. The proposal requests updates to the Class I differential pricing surface based upon:

- Changing dynamics relative to the increased cost of hauling raw milk,
- Location changes of farms and fluid milk processing, and
- Overall increases in cost of production.

My colleague, Jeff Sims, provided a recap of the process that was used to determine the appropriate Class I differentials to include within the proposal. The process utilized work done by Dr. Mark Stephenson and Dr. Chuck Nicholson from the University of Wisconsin (River Falls) assessing milk from supply points to processing plants and then moving finished dairy products to demand points, known as the USDSS model. This work was then assessed by many national and regional milk marketing experts from around the country like me who then applied practical knowledge about milk movements to determine the ultimate differentials that were proposed.

In the following testimony, I will provide additional commentary about how the Northeast region of stakeholders determined the appropriate differentials within our region and share key contributing factors that signify an adjustment is necessary. The Northeast stakeholders is comprised of representatives from Agri-Mark Dairy Cooperative, DFA, Land O'Lakes, Inc., Maryland-Virginia Milk Producers Cooperative Association, Inc., and Upstate Niagara Cooperative, Inc. In addition to my own testimony, other milk marketing experts from some of these cooperatives will be providing testimony supporting the proposal for specific regions and milk movements within the Northeast. Additional testimonies supporting the Northeast region will be provided by Scott Werme from Agri-Mark Dairy Cooperative and Mike John from Maryland-Virginia Milk Producers Cooperative Association, Inc. Many dynamics have impacted the need to update the Class I differential pricing surface across the country, and the changes within the Northeastern states provide some clear examples of these systemic shifts within the industry since 2000.


Overview of the Northeast milk market

Milk production has changed across all states within the Northeast since 2000. States that represent the Northeast are the states of Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire,

New Jersey, New York, Pennsylvania, Rhode Island, Vermont, and Virginia. According to the USDA, all but one of the states within the Northeast decreased milk production from 2000 to 2022 as shown in Table 1 and Map 1. The decreases seen across the 11 states of Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, Pennsylvania, Rhode Island, Vermont, and Virginia amounted to 3.043 billion pounds per year of milk from 2000 to 2022. Growth in milk production in New York more than compensated for the combined loss in these states with growth of 3.739 billion pounds per year from 2000 to 2022. Overall, total milk production grew by 696 million pounds, or 2.2 percent, from 2000 to 2022, led by the growth within the state of New York.

Annual milk production in Northeast states, in millions of pounds									
Source: USDA									
State	2000	2022	Pounds change	% change					
Connecticut	480	430	(50)	-10.4%					
Delaware	150	48	(102)	-67.9%					
Maine	668	554	(114)	-17.1%					
Maryland	1,351	842	(509)	-37.7%					
Massachusetts	376	188	(188)	-50.0%					
New Hampshire	312	219	(93)	-29.8%					
New Jersey	244	87	(157)	-64.3%					
New York	11,921	15,660	3,739	31.4%					
Pennsylvania	11,156	9,949	(1,207)	-10.8%					
Rhode Island	28	10	(18)	-64.5%					
Vermont	2,683	2,554	(129)	-4.8%					
Virginia	1,900	1,424	(476)	-25.1%					
Total	31,269	31,965	696	2.2%					

Table 1.

Map 1. Milk production changes from 2000 to 2022 in Northeast states

It is important to note that along with significant changes in milk production across the Northeast states, there was also a transformation in the resident population in each state, impacting the number of potential dairy consumers and changing the landscape for how farm milk and processed packaged milk is moved to meet consumer demand. Total resident population across the area grew by almost 6.1 million people, or 9.1 percent from 2000 to 2022, as seen in Table 2 below. The states with the most population growth from 2000 to 2022 were Maryland, New Jersey, Pennsylvania, and Virginia. These four states correlate with some of the highest milk production declines seen within the Northeast region with declines of 509 million pounds, 157 million pounds, 1,207 million pounds, and 476 million pounds, respectively. This indicates that milk production is decreasing in regions where the resident population is increasing in the Northeast.

Resident population in Northeast states								
Source: United States Census Bureau								
State	2000	2022	Population change	% change				
Connecticut	3,411,777	3,626,205	214,428	6.3%				
Delaware	786,373	1,018,396	232,023	29.5%				
Maine	1,274,923	1,385,340	110,417	8.7%				
Maryland	5,311,034	6,164,660	853,626	16.1%				
Massachusetts	6,361,104	6,981,974	620,870	9.8%				
New Hampshire	1,239,882	1,395,231	155,349	12.5%				
New Jersey	8,430,621	9,261,699	831,078	9.9%				
New York	19,001,780	19,677,151	675,371	3.6%				
Pennsylvania	12,284,173	12,972,008	687,835	5.6%				
Rhode Island	1,050,268	1,093,734	43,466	4.1%				
Vermont	609,618	647,064	37,446	6.1%				
Virginia	7,078,515	8,683,619	1,605,104	22.7%				
Total	66,840,068	72,907,081	6,067,013	9.1%				

Table 2.

In addition to the noted changes in resident population, it is also important to look at how the per capita consumption of milk beverages, along with milk production, has changed by Northeastern state. The U.S. per capita sales of fluid milk products averaged approximately 197 pounds in the year 2000. By the year 2022, this volume decreased 67 pounds to approximately 130 pounds per person. These figures were calculated by dividing the sum of the monthly Total Fluid Milk Products from the USDA AMS's Estimated Fluid Milk Sales page¹ by the sum of U.S. Census Bureau Resident Population² for each U.S. state and Washington D.C. for the years 2000 and 2022. Although there has been an overall decline in consumption per person, some states have seen a rapid increase in the percentage of milk that needs to be brought in from out of state to meet consumer demand for milk beverage due to changes in resident population and milk production. This has resulted in increased transportation cost to bring milk supplies to these milk deficit regions for processing and, ultimately, for consumer consumption. To show these trends, DFA has estimated the total pounds of milk beverage required to meet demand per state by taking the state population multiplied by the calculated national per capita milk beverage demand (as state level data is not currently available for milk beverage demand). After milk beverage demand by state has been estimated, it is then divided by the state milk production to determine the beverage demand compared to milk production. Table 3 demonstrates these calculations for 2000 and 2022 in the Northeastern states and

¹ Estimated Fluid Milk Sales, previous releases 2022-12 and 2000-12

https://mymarketnews.ams.usda.gov/viewReport/3358; retrieved May 18, 2023

² U.S. Census Bureau, Resident Population for each state, retrieved from FRED, Federal Reserve Bank of St. Louis, https://fred.stlouisfed.org/; retrieved May 18, 2023

included in Appendix 1 is a complete listing of the states in which this calculation was performed. The data shows how the percentage of beverage demand in each state has changed relative to milk production. As you can see, during both 2000 and 2022, the five Northeast states of Rhode Island, New Jersey, Massachusetts, Delaware, and Connecticut required more milk for consumer demand than is produced within the state, making them milk deficit states. However, four out of these five states saw rapid increases in their reliance on out of state milk production to satisfy estimated consumer demand from 2000 to 2022. In fact, most Northeast states increased their beverage demand compared to milk production percentage from 2000 to 2022. And, by looking at the full list within Appendix 1, some of the states within the Northeast are some of the most milk deficit states in the U.S. – matching or exceeding the deficit of most of the Southeastern states.

2000								
		Per capita milk	Total milk beverage		Beverage demand			
	Population	beverage demand	demand	Milk production	compared to milk			
State	(thousands)	(pounds per person)	(millions of pounds)	(millions of pounds)	production (%)			
Rhode Island	1,050	197	207	28	738%			
New Jersey	8,431	197	1,658	244	680%			
Massachusetts	6,361	197	1,251	376	333%			
Delaware	786	197	155	146	106%			
Connecticut	3,412	197	671	480	140%			
Maryland	5,311	197	1,045	1,351	77%			
New Hampshire	1,240	197	244	312	78%			
Virginia	7,106	197	1,398	1,900	74%			
Maine	1,277	197	251	668	38%			
Pennsylvania	12,284	197	2,416	11,156	22%			
New York	19,002	197	3,737	11,921	31%			
Vermont	610	197	120	2,683	4%			

	2022								
		Per capita milk	Total milk beverage		Beverage demand				
	Population	beverage demand	demand	Milk production	compared to milk				
State	(thousands)	(pounds per person)	(millions of pounds)	(millions of pounds)	production (%)				
Rhode Island	1,094	130	142	10	1420%				
New Jersey	9,262	130	1,202	87	1382%				
Massachusetts	6,982	130	906	188	482%				
Delaware	1,018	130	132	48	275%				
Connecticut	3,626	130	471	430	109%				
Maryland	6,165	130	800	842	95%				
New Hampshire	1,395	130	181	219	83%				
Virginia	8,684	130	1,127	1,424	79%				
Maine	1,385	130	180	554	32%				
Pennsylvania	12,972	130	1,684	9,949	17%				
New York	19,677	130	2,555	15,660	16%				
Vermont	647	130	84	2,554	3%				

Changes in manufacturing footprint

Table 3.

Along with shifts in milk production and resident population within the Northeast, changes in the manufacturing footprint for both Class I and manufacturing Classes of milk from 2000 to 2022 have also

occurred. When comparing the Federal Order 1 Monthly Statistical Reports for the months of December 2001³ and December 2022⁴, the number of Pool Distributing Plants operating within Federal Order 1 decreased from a total of 63 to 49, due to industry consolidation and plant closures. Additionally, there has been a shift in the geographic region in which milk has been processed. This can be seen by reviewing Federal Order 1 data representing receipts of producer milk by plant location differential at which priced. Below, in Table 4, is data derived from the same Federal Order 1 Monthly Statistical Reports as noted above for the months of December 2001 and December 2022 and it shows the milk processed within each differential range, by Class.

Table	4.
-------	----

Re	Receipts of Producer Milk by Plant Location Differential at which Priced December 2001								
Location						Percent of			
differentials*	Class I	Class II	Class III	Class IV	Total Receipts	Total Receipts			
Dollar/cwt			Pounds						
3.15 and above	299,563,000	48,318,880	17,271,282	2,008,696	367,161,858	17.7%			
3.00 - 3.10	296,937,236	60,463,424	67,683,633	67,770,323	492,854,616	23.7%			
2.80 - 2.95	125,865,309	70,808,479	63,613,307	121,367,725	381,654,820	18.4%			
2.60 - 2.70	89,060,865	32,502,104	60,900,034	4,025,304	186,488,307	9.0%			
2.40 - 2.55	71,090,733	41,816,372	119,567,188	18,798,434	251,272,727	12.1%			
2.35 and below	27,884,778	62,832,040	280,034,031	26,891,117	397,641,966	19.1%			
Market total	910,401,921	316,741,299	609,069,475	240,861,599	2,077,074,294	100%			

	December 2022								
Location						Percent of			
differentials*	Class I	Class II	Class III	Class IV	Total Receipts	Total Receipts			
Dollar/cwt			Pounds						
3.15 and above	73,628,957	27,434,755	41,700,250	1,233,148	143,997,110	6.4%			
3.00 - 3.10	238,634,742	63,459,976	23,531,407	105,259,129	430,885,254	19.1%			
2.80 - 2.95	149,010,917	92,058,926	59,353,092	160,121,402	460,544,337	20.4%			
2.60 - 2.70	86,746,214	26,448,682	93,369,392	692,280	207,256,568	9.2%			
2.40 - 2.55	70,861,342	166,013,857	113,463,358	47,257,035	397,595,592	17.6%			
2.35 and below	74,669,957	113,760,882	325,809,649	100,188,116	614,428,604	27.3%			
Market total	693,552,129	489,177,078	657,227,148	414,751,110	2,254,707,465	100%			

*Differential combined by Federal Order 1 to ensure confidentiality of data

³ Northeast Marketing Area - Federal Order 1. (2002, January 17).

https://fmmone.com/Statistical_Report/Past_Years/stat200112.pdf

⁴ Northeast Marketing Area - Federal Order 1. (2023, January 19). https://fmmone.com/Statistical_Report/Past_Years/stat202212.pdf

The data demonstrate a significant decrease in Class I milk processed within the \$3.00 and above zones. The decrease, amounting to approximately 284 million pounds of milk from December 2001 to December 2022, can mostly be attributed to the loss of production capacity in the representative zones along with decreases in Class I utilization as a percentage of the market total. Examples of lost Class I production capacity within the \$3.00 and above zones include the closures of Sunnydale Farms in Brooklyn, N.Y. during 2005, Tuscan Dairy in Union, N.J. during 2005, Farmland Dairies in Wallington, N.J. during 2013, Elmhurst Dairy in Jamaica, N.Y. during 2016, and Readington Farms in Whitehouse Station, N.J. during 2022. These areas are representative of generally more urban areas along the eastern side of the Northeast region.

Along with the changes in the locations in which Class I milk is processed, there have also been some significant changes in volumes and regions where other manufacturing Classes of milk are processed. When looking at Class II demand across Federal Order 1 in December 2001, processing volumes were relatively evenly distributed across all the zones within the Order. When looking at the same utilization during December 2022, not only has the overall demand for Class II milk increased in the region but there has also been a considerable increase of volume processed within the \$2.55 and below zones, increasing by approximately 175 million pounds from December 2001 to December 2022, increasing by approximately 48 million pounds is apparent. The growth was primarily attributed to regions in zones \$2.70 and below, representing fewer urban areas in the Northeast geography.

It is evident there have been significant changes in the way milk must be moved within the Northeast region to service the demand within each zone. As the relative volume of Class I processing has decreased in the \$3.00 and above zones but with some demand still existing within those zones, and as growth in Class II and III has primarily been in \$2.70 and below zones, local milk supplies are being utilized to fulfill Class II and III demand while Class I milk supplies must travel further today at a higher cost per mile than before. Though it is likely that there is less mileage associated with servicing plants where the primary growth has occurred for Classes II and III due to proximity to milk supply, there has been higher costs associated with transportation than there were in 2000 for a variety of reasons.

In summary, the Northeast milk market has changed in significant ways since 2000. Any changes with the Class I price surface should be taking the changes that have been explained with milk production, resident population, and the manufacturing footprint, into consideration.

Transportation costs and dynamics associated with changing milk movements

As a cooperative with investment in hauling assets since 2002, DFA has tracked costs associated with maintaining a fleet for the purpose of transporting raw milk from the farm to the processing location. These costs include the purchase of physical assets including trucks, trailers, and tires, as well as the cost associated with labor, insurance, and fuel. Table 5 shows the hauling costs that DFA has experienced since 2002. When looking at DFA's specific transportation assets located in the New England region, since 2003, the cost to purchase a day cab truck has increased \$84,287 or 104 percent, and the cost to purchase a 7,500 gallon, 2 compartment trailer has increased \$112,586 per trailer or 224 percent. To maintain an adequate pool of drivers and to keep up with changes in minimum wage across the country, labor rates have needed to increase roughly \$17.50 per hour, or 140 percent, since 2005. Additionally, as the equipment has escalated in price and insurance companies have assessed the industry's risk differently, the cost to insure a fleet has also increased dramatically. This cost has increased approximately 39 percent from 2005 to 2023. Lastly, fuel cost remains a key contributor to the cost associated with a transportation fleet. From 2002 to 2022, the yearly average price per gallon of fuel in the New England and Central Atlantic regions in which DFA operates in have increased by \$3.87 and \$3.95 per gallon, respectively.

Table 5. Hauling cost factors, Dairy Farmers of America, Northeast Area

		Ye	ear					
Hauling equipment costs		2003		2022		iffe re nce	% change	
Tractor, day cab	\$	81,300	\$	165,587	\$	84,287	104%	
7,500 gallon, 2 compartment trailer	\$	50,210	\$	162,796	\$	112,586	224%	
		Month	n / Y	ear				
Other hauling costs	Mar 2005		Jan 2023		Difference		% change	
Average labor rate, per hour	\$	12.50	\$	30.00	\$	17.50	140%	
Average vehicle insurance, per vehicle, per year	\$	8,000	\$	11,100	\$	3,100	39%	
		Ye	ear					
Diesel fuel costs		2002		2022	Di	iffe re nce	% change	
Average price per gallon of No 2 diesel fuel, New England (PADD1A) ¹	\$	1.4048	\$	5.2720	\$	3.8672	275%	
Average price per gallon of No 2 diesel fuel, Central Atlantic (PADD1B) ¹	\$	1.4032	\$	5.3538	\$	3.9506	282%	

¹ Source: U.S. Energy Information Administration

In addition to costs associated with owning and managing a fleet to transport milk from the farm to the processing plant, there are other factors that contribute to increased cost. One factor, as highlighted within Farm Credit East's February 2023 publication titled "Challenges in Northeast Milk Transportation⁵," is

⁵ 2023 Challenges in Northeast Milk Transportation. (n.d.). https://www.farmcrediteast.com/en/resources/Industry-Trends-and-Outlooks/Reports/230228NortheastMilkTransportation2023

weight limits between states. Today, there are not consistent laws within the Northeast states that allow for the same weights to be carried on trucks and trailers. As the report cites, "truck technology has significantly improved in recent years, and today's trucks can safely carry more weight than in the past. However, many laws have not kept pace with these improvements." With some Northeast states not allowing for heavier loads to take advantage of the new technology, with or without a permit, efficiency of milk movements across the region is impacted. As many loads travel across state lines, not being able to take advantage of increased weight capacities decreases efficiencies in the supply chain and increases cost.

All of these factors lead to an increased cost per hundredweight paid by dairy farmers in the region to transport milk from the farm to the processing location. According to a 2000 Dairy Farm Management Business Summary of New York State⁶ from Cornell University, the average cost of hauling and coop dues charged across 74 farms in New York State was \$0.59 per hundredweight in 2000. Fifteen years later, the same publication refreshed their data for the year 2015 with 132 farms in New York State and the average cost of hauling and coop dues increased to \$0.80 per hundredweight. This represented a 35 percent increase. The 2021 Dairy Farm Business Summary⁷ published by Farm Credit East stated that the average trucking (marketing) cost per hundredweight was \$1.29 per hundredweight across all farms within the summary. Assuming these costs from 2000 to 2021 correlate with similar factors included, this would represent an average increase in cost of \$0.70 per hundredweight in transportation cost paid by dairy farmers in the Northeast region.

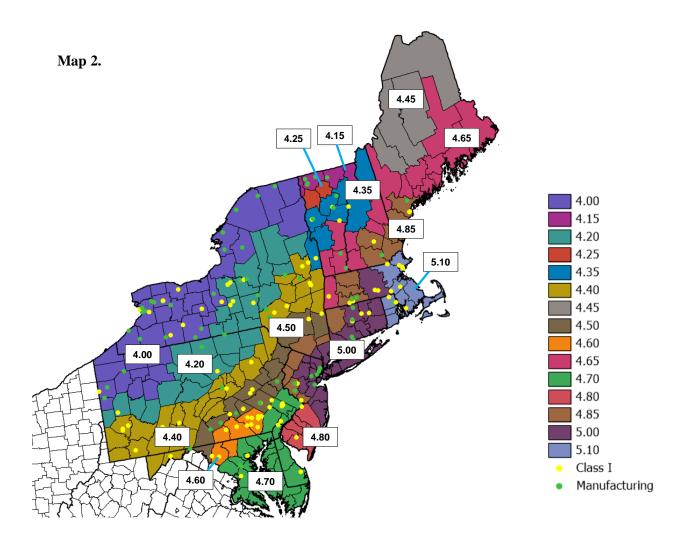
Establishment of proposed Class I zones

All the factors stated previously impacted how the Northeast working group established the proposed Class I differential pricing surface within our region. To begin the process, the group utilized the University of Wisconsin model and took the average of the model's output for May and October 2021 to smooth any variability in the model's results that would have represented high transportation costs for a specific month, or changes in supply and consumption between the spring and fall months. When using the average between the two outputs, the average increase in differential values across the Northeast was \$1.78 per hundredweight compared to the current Class I differentials. The next step in the process was to compare the average values from the model to the current county differentials to see any counties that needed to be adjusted from the model average based on the anchor city of Winchester, Va., actual milk

⁶ Knoblauch, W. A. (2001, October 1). Dairy Farm Management: Business Summary, New York State, 2000. https://ecommons.cornell.edu/xmlui/handle/1813/65023

⁷ 2021 Northeast Dairy Farm Summary. (n.d.). https://www.farmcrediteast.com/resources/Industry-Trends-and-Outlooks/Reports/2021-northeast-dairy-farm-summary

movements, historical zone differences, or any potential for disorderly marketing based on current or future plant locations. An anchor city refers to a city that was selected during the initial process as described by Jeff Sims to establish the relative level from which regional subgroups could branch out and discuss increasing or decreasing the USDSS-generated Class I differential values using knowledge of local challenges and specifics.


The Northeast working group used the closest in proximity anchor city, Winchester, Va., at the model average value of \$4.50 per hundredweight for the county in which it is located (Frederick County, Va.), which is \$1.70 higher than the current differential of \$2.80 per hundredweight, to determine the proposed differentials for the remainder of the region. By utilizing Winchester, Va. as the anchor city, the Northeast working group moved through the remainder of the region by looking at historical differential relationships from the anchor city, along with how the model's results related the surrounding counties to the anchor city. Ultimately, the group proposed differentials for all counties within our region that were very much in line with the May and October 2021 model average, resulting in an average differential higher than the model suggested by \$0.01 per hundredweight. Only 24 out of 274 counties within our proposal for the Northeast represented values higher than the October 2021 model which included higher costs than May 2021. This variance is primarily due to historical milk movements in these counties and most of these will be explained in further detail within this testimony and within others that are providing additional supporting testimony.

For context surrounding why Winchester, Va. was important to use as an anchor city and how its values are then used as a basis for the remainder of the Northeast region, it is important to understand this city's relationship with the Southeast milk markets and then with the Northeast milk markets. Winchester, Va. represents the southern edge of the Northeast milk marketing area and abuts to the Southern milk marketing areas. Because of its proximity to both areas, it is important for the milk that is being delivered to Winchester, Va. to be priced appropriately as to not give an advantage, or disadvantage, to one Order or another. If values had not been competitive for deliveries into Winchester, Va. compared to further south delivery points, milk could deliver direct to Federal Order 5 plants from Federal Order 1 to gain higher differentials and potentially leave Federal Order 1 plants unfilled, resulting in disorderly milk marketing. This practical application of making Winchester, Va. relatively comparable to the Southeast region is then extrapolated to the remainder of the Northeast to ensure that Federal Order 1 milk maintains deliveries into Federal Order 1 plants to support the infrastructure investments within the region, without providing a disproportionate advantage to move milk to other Federal Orders.

Below, within Table 6, are select counties throughout the Northeast region that have important manufacturing facilities that operate within Federal Order 1 and/or surrounding Orders. When looking at the data within the table for these select 49 counties, the average difference between the proposed differentials and the average of the study is approximately \$0.03 per hundredweight. This signifies that the proposed differentials align very well with the average of the University of Wisconsin's models.

		INO	rtne	east region					
Study results, Difference									
County	State	Current differential		average of May/Oct 2021*		oposed ferential	prop	etween posal and verage	
Hartford	CT	\$ 3.15	\$	4.95	\$	5.00	\$	0.05	
New Haven	CT	\$ 3.15 \$ 3.15	۰ ۶	5.05	э \$	5.00	ۍ \$	(0.05)	
New Castle	DE	\$ 3.05	\$	4.55	\$	4.70	\$	0.15	
Hampden	MA	\$ 3.00 \$ 3.00	\$	4.85	\$	4.85	\$	0.15	
Norfolk	MA	\$ 3.00 \$ 3.25	\$	5.25	\$	5.10	\$	(0.15)	
Baltimore City	MD	\$ 3.00	\$	4.70	\$	4.70	\$	(0.15)	
Frederick	MD	\$ 3.00 \$ 2.90	\$	4.70	\$	4.65	\$	0.10	
Howard	MD	\$ 3.00	\$	4.70	\$	4.70	\$	0.10	
Prince George's		\$ 3.00	\$	4.90	\$	4.70	\$	(0.20)	
Washington	MD	\$ 2.80	\$	4.40	\$	4.50	\$	0.10	
Cumberland	ME	\$ 3.00	\$	4.50	\$	4.85	\$	0.35	
Merrimack	NH	\$ 3.00 \$ 3.00	\$	4.70	\$	4.85	\$	0.35	
Bergen	NJ	\$ 3.15	\$	5.15	\$	5.00	\$	(0.15)	
Burlington	NJ	\$ 3.05	\$	4.85	\$	4.80	\$	(0.15)	
Cumberland	NJ	\$ 3.05	\$	4.75	\$	4.80	\$	0.05	
Middlesex	NJ	\$ 3.10	\$	4.95	\$	5.00	\$	0.05	
Albany	NY	\$ 2.70	\$	4.40	\$	4.40	\$		
Allegany	NY	\$ 2.30	\$	4.00	\$	4.00	\$		
Cattaraugus	NY	\$ 2.10	\$	4.00	\$	4.00	\$	-	
Cayuga	NY	\$ 2.30	\$	4.00	\$	4.00	\$		
Cortland	NY	\$ 2.50	\$	4.05	\$	4.20	\$	0.15	
Delaware	NY	\$ 2.70	\$	4.35	\$	4.40	\$	0.05	
Erie	NY	\$ 2.20	\$	3.95	\$	4.00	\$	0.05	
Franklin	NY	\$ 2.30	\$	4.25	\$	4.00	\$	(0.25)	
Genesee	NY	\$ 2.20	\$	3.95	\$	4.00	\$	0.05	
Jefferson	NY	\$ 2.30	\$	4.15	\$	4.00	\$	(0.15)	
Madison	NY	\$ 2.50	\$	4.00	\$	4.20	\$	0.20	
Monroe	NY	\$ 2.30	\$	3.90	\$	4.00	\$	0.10	
Oneida	NY	\$ 2.50	\$	4.05	\$	4.20	\$	0.15	
Onondaga	NY	\$ 2.50	\$	4.00	\$	4.20	\$	0.20	
Rensselaer	NY	\$ 2.70	\$	4.45	\$	4.40	\$	(0.05)	
Saratoga	NY	\$ 2.70	\$	4.35	\$	4.40	\$	0.05	
Steuben	NY	\$ 2.30	\$	4.05	\$	4.10	\$	0.05	
Tioga	NY	\$ 2.50	\$	4.15	\$	4.20	\$	0.05	
Berks	PA	\$ 2.80	\$	4.45	\$	4.45	\$	-	
Cumberland	PA	\$ 2.80	\$	4.35	\$	4.45	\$	0.10	
Delaware	PA	\$ 3.05	\$	4.60	\$	4.70	\$	0.10	
Lancaster	PA	\$ 2.90	\$	4.45	\$	4.55	\$	0.10	
Lycoming	PA	\$ 2.50	\$	4.25	\$	4.25	\$	-	
Montgomery	PA	\$ 3.05	\$	4.60	\$	4.70	\$	0.10	
Northumberland		\$ 2.70	\$	4.30	\$	4.40	\$	0.10	
Philadelphia	PA	\$ 3.05	\$	4.65	\$	4.70	\$	0.05	
Schuylkill	PA	\$ 2.80	\$	4.35	\$	4.45	\$	0.10	
Tioga	PA	\$ 2.50	\$	4.15	\$	4.20	\$	0.05	
York	PA	\$ 2.90	\$	4.45	\$	4.55	\$	0.10	
Frederick	VA	\$ 2.80	\$	4.50	\$	4.50	\$	-	
Addison	VT	\$ 2.60	\$	4.45	\$	4.35	\$	(0.10)	
Franklin	VT	\$ 2.40	\$	4.35	\$	4.15	\$	(0.20)	
Washington	VT	\$ 2.60	\$	4.45	\$	4.35	\$	(0.10)	

Map 2 below represents the differentials that were proposed for the entire Northeast region, including those that were represented above in Table 6.

There were some instances where the group chose to utilize their expertise on milk movements and historical relationships with milk sheds to smooth out county differentials to reduce negative impacts to dairy farmers and Class I processing facilities. This would also help prevent disorderly milk marketing and support meeting Class I demand on a routine basis. Some of these instances include, but are not limited to:

- The differentials within the State of Maine, including the county containing Class I processing facilities, Cumberland County
- Certain portions of Maryland,
- Certain portions of New Jersey,

- Certain portions of New York, including counties comprising the Western, Central, and Northern portions of the state
- Certain portions of Pennsylvania, and,
- Certain portions of Vermont.

Western/Central New York and New Jersey changes

Within our proposal, there are specific regions within New York that move away from the current differential pattern, including in Western and Central New York. In general, the proposal suggests flatter differentials in Western New York and more alignment with Western Pennsylvania differentials. This proposal adjusts the differentials for changes in manufacturing assets, Class I utilization, and milk movement dynamics in the region that have occurred since 2000. At the time of Federal Order reform, the New York counties of Erie and Genesee had significant manufacturing plant capacity, with some Class I facilities that serviced the Buffalo and Rochester markets. Since then, there has been significant expansion in Class I processing in both counties, with more expansion that has been recently announced by Empire State Development in Genesee County⁸. Some of this expansion can be seen in Table 4 above which demonstrates the changes in Class I receipts by plant location differential. In a Class whose pounds continue to decline in Federal Order 1, the Table 4 shows an increase of close to 50 million pounds per month of Class I milk being pooled at location differentials of \$2.35 and below, which would primarily include the New York counties of Erie and Genesee. In addition to the Class I investment that has already occurred in Western New York, a recent announcement by New York State's Governor Hochul announced plans for a new 5 million pounds per day dairy beverage facility with some assumed Class I production in Monroe County New York, to be completed in the coming years.⁹ This plant is reportedly the largest in the Northeast and will impact the demand for milk significantly in the coming years.

The Western New York marketplace has attracted other manufacturing investments, with more to be completed soon. Since 2000, there has been Class II investment in Genesee County. There is also a significant expansion in Class III manufacturing underway just south of there in Cattaraugus County in the coming year.¹⁰ The Cattaraugus County manufacturing facility will replace assets that are currently

⁸ Empire State Development Announces HP Hood to Grow Operations in. (2023, August 31). https://esd.ny.gov/esd-media-center/press-releases/esd-announces-hp-hood-grow-operations-genesee-county

⁹ Governor Hochul Announces Plans for the Coca-cola Company to Build \$650 Million fairlife® Production Facility in Monroe County. (n.d.). Governor Kathy Hochul. https://www.governor.ny.gov/news/governor-hochul-announces-plans-coca-cola-company-build-650-million-fairlifer-production

¹⁰ Governor Hochul announces Great Lakes cheese breaks ground on \$518 million manufacturing and packaging plant in Cattaraugus County. (n.d.). Governor Kathy Hochul. https://www.governor.ny.gov/news/governor-hochul-announces-great-lakes-cheese-breaks-ground-518-million-manufacturing-and

operating within Allegany County, and, according to the press release, the new facility will double the milk consumption of the existing plant. Although these counties are next to each other, and the facilities will be less than 20 miles apart, in today's differential structure, the counties would fall in different zones. Within our proposal, Allegany and Cattaraugus counties have been requested to be at the same zone differential due to this transition and ultimately be at the same level as the remainder of Western New York and Western Pennsylvania under the new proposed flattened structure. This aligns considering that the milk supply region for both delivery points will be the same, if not extended, given the size and scope of the new Cattaraugus County facility. Regardless of the outcome of this hearing, it is requested that a modification be made to align differentials between Alleghany and Cattaraugus Counties to reduce any disorderly marketing of milk within Western New York that would negatively impact farms.

The way that the milk supply moves to facilitate the demand within Western New York has changed as the demand has changed. Previously, milk had traditionally moved from East to West to fill demand across New York state. Today, due to the investments and milk supply/demand dynamics, milk is moving different directions in Western New York to fill demand. While some is staying local or making those same West to East movements to fill demand in Central New York, on any given day, milk is also moving from more Eastern counties, for example Livingston and Ontario, to fill demand in Genesee and Erie counties. Additionally, milk moves routinely North to South from the Western New York counties of Cattaraugus, Chautauqua, Allegany, Steuben, and Wyoming, to fill demand in Western Pennsylvania. These milk movements indicate that milksheds are overlapping for multiple different demand points for Western New York produced milk. Thus, a flattened zone differential structure would create less challenges when moving milk to meet demand.

It is important to take into consideration all these factors when looking at the Class I and producer price surface in Western New York. Under Federal Order reform, it was necessary to have a lower price in Buffalo region (Erie County) to remain competitive with Class I plants in Western Pennsylvania that had a lower price. As Western Pennsylvania's differentials increase with the current proposal, it makes sense to create a flatter, common \$4.00 zone in all Western New York and Western Pennsylvania. This also eliminates the difference between the Buffalo region (Erie County) and Rochester (Monroe County) markets. This creates a level playing field for milk costs from a common supply area moving in different directions.

Another item for consideration surrounding the Western New York differentials and the request to flatten them compared to Western Pennsylvania is the need to align blend prices. Due to the overlapping milksheds competing for farm milk between these two regions, alignment is necessary to not cause uneconomic milk movement and unequal raw product costs for processors. This is a difficult job to do when taking into consideration the different Federal Orders (1 & 33) and the differing utilizations and pricing. Today, plants in Western Pennsylvania are in the \$2.10 zone, but further east in western New York the current differential reaches as high as \$2.30.

Historically, the uniform price difference when comparing the Producer Price Differentials (PPDs) has shown that over time the PPDs have often been higher in Order 33. This due to a variety of factors including higher average Class I utilization in that order and relative values of Class II, III and IV prices. The difference between the Federal Order 1 and Federal Order 33 uniform blends at a \$2.00 zone has averaged -\$0.21 per hundredweight over the period between 2010 and July 2023. To underscore the need for a flattened zone and aligned blend prices between Order 1 and Order 33, milk from western New York counties is already servicing Order 33, as demonstrated in the maps included in USDA Exhibit 58 for Federal Order 1 and Federal Order 33.

There is potential for misalignment between the Orders if Western New York's final differentials relative to Western Pennsylvania's are lower than the proposed. The working group gave careful consideration to blend price alignment between Western Pennsylvania and Western New York in an effort to not impact current market dynamics between handlers and producers who face different pooling access and producer prices between the orders. The milk marketed in the non-Federal Order area between Order 1 and Order 33 has acted as a buffer, but state regulation whether by New York or Pennsylvania is very limited in the ability to solve potential misalignment. Therefore, concern must be to provide pricing which does not exacerbate the situation.

Moving east from Western New York to Central New York, Onondaga and Madison counties have been proposed at \$0.20 higher than the average model results and \$0.20 higher than the flattened zone in Western New York. This is to enhance the current relationship that these counties have with Suffolk County, Massachusetts as well as other regions of New York. Currently, there is a \$0.75 spread between the counties while in the proposal there would be a \$0.90 spread. The cost to transport from Central New York to other regions including New England and New Jersey continues to escalate and the proposal reflects this increased cost. It was important to ensure that sufficient zone is available to ensure these milk movements going forward to fulfill demand with adequate supply.

Another item relative to Central New York is the relationship between Oneida and Madison counties. The average model results suggested two different differentials for these two counties, while the proposal requests these counties to maintain the same differential as they have today. Within these counties, there are three primary manufacturing facilities – one a Pool Distributing Plant, one a Pool Supply Unit Plant, and one a Pool Supply Plant. Two of the three facilities are operated by the same organization and are often looked at as a unit for milk marketing purposes. As such, it would create disorderly marketing if these plants were separated by zones as they are utilizing milk from the same supply areas and milk is often swapped between the two to maintain an adequate operating supply.

Moving south from New York, the proposed differentials for the state of New Jersey address some transportation related challenges associated with servicing the New Jersey market. As demonstrated within Table 3 above, New Jersey largely relies on out of state milk production to fulfill consumer demand and typically brings in milk supplies from surrounding regions like New York and Pennsylvania to meet that need. To transport milk into New Jersey from surrounding states, there are cost factors that must be taken into consideration. These cost factors include additional bridge tolls when exiting the state and returning to New York or Pennsylvania and decreased payload of trailers. An example of a toll for a 5-axel trailer crossing from Burlington, N.J. to Bristol, Pa. is \$30 per trip, or approximately \$0.06 per hundredweight on a 50,000-pound load of milk. In addition to the tolls, there is a reduced payload capacity of trailers traveling into New Jersey by at least 15,000 pounds due to road weight restrictions within the state. The reduction in payload reduces overall efficiencies for hauling companies and therefore increases costs while delivering into New Jersey. Today, milk movements from Lancaster County, Pa. to Philadelphia County, Pa. maintain the same zone differential as milk movements from Lancaster County, Pa. to Burlington County, N.J. However, as just described, there is additional cost to service the New Jersey destination. To acknowledge the cost factors at play to service New Jersey from southeast Pennsylvania, the working group built in a \$0.10 per hundredweight difference between southeastern Pennsylvania counties compared to southern New Jersey instead of maintaining the same spread as the current differentials.

To provide further detail and perspective on some of the other regions previously mentioned, representatives from Agri-Mark Dairy Cooperative and Maryland-Virginia Milk Producers Cooperative Association will provide testimony with further detail on specific reasons for these movements away from the model results to better align with the practical challenges of marketing milk in these areas. Agri-Mark will provide testimony specific to the State of Maine, Northern Vermont, and Northern New York. Additionally, Maryland-Virginia will provide testimony specific to certain portions of Pennsylvania, Maryland, and how the Northeast worked to align with the Mideast region to smooth differentials where our regions intersected.

Conclusion

Thank you for your time today.

References

Empire State Development Announces HP Hood to Grow Operations in. (2023, August 31). <u>https://esd.ny.gov/esd-media-center/press-releases/esd-announces-hp-hood-grow-operations-genesee-county</u>

Estimated Fluid Milk Sales, previous releases 2022-12 and 2000-12 https://mymarketnews.ams.usda.gov/viewReport/3358; retrieved May 18, 2023

Governor Hochul announces Great Lakes cheese breaks ground on \$518 million manufacturing and packaging plant in Cattaraugus County. (n.d.). Governor Kathy Hochul. https://www.governor.ny.gov/news/governor-hochul-announces-great-lakes-cheese-breaks-ground-518-million-manufacturing-and

Governor Hochul Announces Plans for the Coca-cola Company to Build \$650 Million fairlife® Production Facility in Monroe County. (n.d.). Governor Kathy Hochul. https://www.governor.ny.gov/news/governor-hochul-announces-plans-coca-cola-company-build-650million-fairlifer-production

Knoblauch, W. A. (2001, October 1). Dairy *Farm Management: Business Summary, New York State, 2000.* https://ecommons.cornell.edu/xmlui/handle/1813/65023

Northeast Marketing Area - Federal Order 1. (2002, January 17). <u>https://fmmone.com/Statistical_Report/Past_Years/stat200112.pdf</u>

Northeast Marketing Area - Federal Order 1. (2023, January 19). <u>https://fmmone.com/Statistical_Report/Past_Years/stat202212.pdf</u>

Terán, A. (2022). Dairy products: Per capita consumption, United States (pounds per person). USDA ERS. <u>https://www.ers.usda.gov/data-products/dairy-data/dairy-data/#Historical%20dairy%20data</u>

U.S. Census Bureau, Resident Population for each state, retrieved from FRED, Federal Reserve Bank of St. Louis, https://fred.stlouisfed.org/; retrieved May 18, 2023

2021 Northeast Dairy Farm Summary. (n.d.). https://www.farmcrediteast.com/resources/Industry-Trendsand-Outlooks/Reports/2021-northeast-dairy-farm-summary

2023 Challenges in Northeast Milk Transportation. (n.d.). https://www.farmcrediteast.com/en/resources/Industry-Trends-and-Outlooks/Reports/230228NortheastMilkTransportation2023

Appendix 1

		D 1 11	2000	I	
		Per capita milk	Total milk beverage	A 611 A - 4	Beverage demand
a	Population	beverage demand	demand	Milk production	compared to milk
State	(thousands)	(pounds per person)	(millions of pounds)	(millions of pounds)	production (%)
Alaska	628	197	124	13	950%
Rhode Island	1,050	197	207	28	738%
New Jersey	8,431	197	1,658	244	680%
Massachusetts	6,361	197	1,251	376	333%
Alabama	4,452	197	876	348	252%
South Carolina	4,024	197	791	370	214%
Hawaii	1,214	197	239	116	206%
Connecticut	3,412	197	671	480	140%
West Virginia	1,807	197	355	265	134%
North Carolina	8,082	197	1,589	1,189	134%
Florida	16,048	197	3,156	2,463	128%
Wyoming	494	197	97	76	128%
Louisiana	4,472	197	880	698	126%
Illinois	12,434	197	2,446	2,094	117%
Georgia	8,227	197	1,618	1,433	113%
Arkansas	2,679	197	527	485	109%
Delaware	786	197	155	146	106%
Mississippi	2,848	197	560	541	104%
Nevada	2,019	197	397	476	83%
Tennessee	5,704	197	1,122	1,405	80%
New Hampshire	1,240	197	244	312	78%
Maryland	5,311	197	1,045	1,351	77%
Virginia	7,106	197	1,398	1,900	74%
Texas	20,944	197	4,119	5,743	72%
Montana	904	197	178	338	53%
Oklahoma	3,454	197	679	1,314	52%
Ohio	11,364	197	2,235	4,461	50%
Indiana	6,092	197	1,198	2,419	50%
Missouri	5,607	197	1,103	2,258	49%
Kentucky	4,049	197	796	1,695	47%
Colorado	4,327	197	851	1,924	44%
Oregon	3,430	197	675	1,640	41%
Maine	1,277	197	251	668	38%
Kansas	2,694	197	530	1,540	34%
Michigan	9,952	197	1,957	5,705	34%
Arizona	5,161	197	1,015	3,033	33%
New York	19,002	197	3,737	11,921	31%
Nebraska	1,714	197	337	1,255	27%
Utah	2,245	197	441	1,687	26%
Pennsylvania	12,284	197	2,416	11,156	22%
Washington	5,911	197	1,162	5,593	21%
California	33,988	197	6,685	32,245	21%
North Dakota	642	197	126	686	18%
Iowa	2,929	197	576	3,934	15%
Minnesota	4,934	197	970	9,493	10%
South Dakota	756	197	149	1,474	10%
New Mexico	1,821	197	358	5,236	7%
Wisconsin	5,374	197	1,057	23,259	5%
Vermont	610	197	120	2,683	4%
Idaho	1,299	197	256	7,223	4%
Washington D.C.	572	197	113		n/a

			2022	-	
		Per capita milk	Total milk beverage	5 ett. 1	Beverage demand
	Population	beverage demand	demand	Milk production	compared to milk
State	(thousands)	(pounds per person)	(millions of pounds)	(millions of pounds)	production (%)
Alabama	5,074	130	659	32	2059%
Rhode Island	1,094	130	142	10	1420%
New Jersey	9,262	130	1,202	87	1382%
Arkansas	3,046	130	395	45	879%
Louisiana	4,590	130	596	112	532%
Massachusetts	6,982	130	906	188	482%
South Carolina	5,283	130	686	161	426%
Mississippi	2,940	130	382	90	424%
West Virginia	1,775	130	230	75	307%
Delaware	1,018	130	132	48	275%
Tennessee	7,051	130	915	494	185%
North Carolina	10,699	130	1,389	912	152%
Florida	22,245	130	2,888	1,933	149%
Connecticut	3,626	130	471	430	109%
Illinois	12,582	130	1,633	1,714	95%
Maryland	6,165	130	800	842	95%
Missouri	6,178	130	802	941	85%
New Hampshire	1,395	130	181	219	83%
Virginia	8,684	130	1,127	1,424	79%
Oklahoma	4,020	130	522	715	73%
Georgia	10,913	130	1,417	2,028	70%
Montana	1,123	130	146	223	65%
Kentucky	4,512	130	586	926	63%
Nevada	3,178	130	413	794	52%
Maine	1,385	130	180	554	32%
North Dakota	779	130	101	319	32%
Wyoming	581	130	75	240	32%
Ohio	11,756	130	1,526	5,519	28%
Texas	30,030	130	3,899	16,524	24%
Oregon	4,240	130	550	2,636	21%
Utah	3,381	130	439	2,169	20%
Indiana	6,833	130	887	4,413	20%
Arizona	7,359	130	955	4,772	20%
Nebraska	1,968	130	255	1,416	18%
Pennsylvania	12,972	130	1,684	9,949	17%
New York	19,677	130	2,555	15,660	16%
Washington	7,786	130	1,011	6,239	16%
Colorado	5,840	130	758	5,314	14%
California	39,029	130	5,067	41,787	12%
Michigan	10,034	130	1,303	11,740	11%
Kansas	2,937	130	381	4,143	9%
Iowa	3,201	130	416	5,770	7%
Minnesota	5,717	130	742	10,477	
New Mexico	2,113	130	274	7,148	4%
Vermont	647	130	84	2,554	3%
South Dakota	910	130	118	4,161	3%
Wisconsin	5,893	130	765	31,882	
Idaho	1,939	130	252	16,628	2%
Alaska	734	130	95		n/a
Washington D.C.	672	130	87	-	n/a
Hawaii	1,440	130	187	-	n/a