National List Petition
For Elderberry Juice Color

CBI deleted copy

Elderberry Juice Color
January 12, 2007
January 12, 2007

Robert L. Pooler
USDA/AMS/T&M/ National Organic Program
Agricultural Marketing Specialist
Room 4008-S, Ag Stop 0268
1400 Independence Avenue, SW
Washington, DC 20250

Subject: National List Petition Submission for Elderberry Juice Color.

Dear Mr. Pooler:

GNT USA, Inc. is petitioning elderberry juice color for inclusion on the National List under Section 205.606:

Agricultural (nonorganic) substances allowed in or on processed products labeled as “organic” or “made with organic (specified ingredients)”.

Elderberry juice color is classified by the F.D.A as “exempt from certification” under 21CFR73.250, fruit juice color.

The proposed criteria for this category are as follow:
- The colors have to be manufactured from elderberry
- The process has to be exclusively physical without any synthetic aid or adjuvant.
- The production methods have to be certified organic under the USDA-NOP standards.

Attached, please find the completed forms as well as the Material Safety Data Sheet, the Statement on Residue and the Organic Production Methods Certificate for elderberry juice color.

If further information is required, please contact our main office in Tarrytown, New York at 914.524.0600.

Sincerely,

Amelie Hayte
Elderberry Juice Color

ITEM A

The substance is being petitioned for inclusion on the National List under Section 205.606:

Non-organic agricultural substances allowed in or on processed products labeled as "organic" or "made with organic (specified ingredients)."

ITEM B

1. Elderberry Juice Color

2. Manufactured by:

GNT Nederland B.V.
Industrieweg 26
5731 HR Mierlo
The Netherlands
+31-492-663952

3. Intended and current use of the substance:

 Food ingredient having coloring properties

4. The substance is being used as a food ingredient having coloring properties in diverse foods and beverages. The substance is added during the processing of the food product to impart color throughout the shelf life of the product.

Elderberry Juice Color – January 12, 2007

The information contained herein or any other information given by us is, to the best of our knowledge and belief, accurate. However, since the conditions of handling and use are beyond our control, we do not guarantee any results, and we are not liable for any damage incurred by following these suggestions. Nothing contained herein is to be construed as a recommendation for use in violation of any patents or of applicable laws or regulations.
Elderberry Juice Color

5. The source of the food ingredient is elderberry.

The production process is on an entirely physical basis such as crushing, pressing, filtering and concentration by vacuum evaporation. Water, invert sugar and citric acid may be added during the manufacturing process.

6. Reviews by State, private certification programs or organizations:

GNT Nederland B.V., the production site of GNT Group, is under review and/or certification of the following organizations

- Dutch Food and Consumer Product Safety Authority (Voedsel en Waren Autoriteit - VWA)
- DNV Nederland - certification body for ISO 9001:2000, Dutch HACCP and GMP
- Skal Certification Organic Production - organic production and certification in the Netherlands are based on the EU-regulation (EEC) nr. 2092/91
- Skal Control Union World Group - organic production and certification in the Netherlands according to USDA Organic and NOP

7. FDA registration number: 18189116412

8. The Chemical Abstract Service (CAS) is not applicable.

The substance falls under the F.D.A regulation for “colors exempt from certification” 21CFR73.250, fruit juice color.
Elderberry Juice Color

9. N/A. The substance is intended for food application. It is 100% natural and is not formulated or processed with any synthetic aid or adjuvant.

10. See enclosed Material Safety Data Sheet (MSDS)

11. The substance is made from elderberry, which has a well-known history of consumption and which is Generally Recognized As Safe (GRAS).

12. Petition Justification Statement

G. Inclusion of a non-organically produced agricultural substance onto the National List, 205.606.

Elderberry Juice Color – January 12, 2007

The information contained herein or any other information given by us is, to the best of our knowledge and belief, accurate. However, since the conditions of handling and use are beyond our control, we do not guarantee any results, and we are not liable for any damage incurred by following these suggestions. Nothing contained herein is to be construed as a recommendation for use in violation of any patents or of applicable laws or regulations.
The information contained herein or any other information given by us is, to the best of our knowledge and belief, accurate. However, since the conditions of handling and use are beyond our control, we do not guarantee any results, and we are not liable for any damage incurred by following these suggestions. Nothing contained herein is to be construed as a recommendation for use in violation of any patents or of applicable laws or regulations.
<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Documentation (TAP, TARP, old regulations, agency action)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Are there adverse effects on environment from manufacture, use, or disposal? [§205.600 b.2]</td>
<td>✓</td>
<td></td>
<td>N/A</td>
<td>✓, substance is not synthetic. It is derived from elderberry only, processed by physical means like crushing, pressing, filtering and concentration by vacuum-evaporation (See attached process flow chart). During the processing, no chemical solvents are used. The production is GMP certified and organic wastes are used for animal feed according to specific EC legislation related to the animal feed sector.</td>
</tr>
<tr>
<td>2. Is there environmental contamination during manufacture, use, misuse, or disposal? [§6518 m.3]</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓, all raw materials and processing adjuvants are derived from all-natural sources. The production methods are certified organic under the USDA-NOP standards. (See attached certificate)</td>
</tr>
<tr>
<td>3. Is the substance harmful to the environment? [§6517(e)(1)(A)(ii); 6517(c)(2)(A)(ii)]</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓, the substance is manufactured from natural sources only and is therefore not harmful to the environment.</td>
</tr>
<tr>
<td>4. Does the substance contain List 1, 2, or 3 inert? [§6517 c (1)(B)(ii); 205-601(m)(2)]</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓, the substance contains only the natural constituents of the processed elderberry. Citric acid and invert sugar may be used for standardization purposes and these ingredients are GRAS.</td>
</tr>
<tr>
<td>5. Is there potential for detrimental chemical interaction with other materials used? [§6518 m.1]</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓, there is no indication for detrimental chemical interaction of elderberry extracts with other materials.</td>
</tr>
<tr>
<td>6. Are there adverse biological and chemical interactions in agro-ecosystem? [§6518 m.5]</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓, this substance is intended for food application</td>
</tr>
<tr>
<td>7. Are there detrimental physiologica effects on soil organisms, crops, or livestock? [§6518 m.5]</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓, this substance is intended for food application</td>
</tr>
<tr>
<td>8. Is there a toxic or other adverse action of the material or its breakdown products? [§6518 m.2]</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓, the substance is from natural sources only (elderberry, citric acid, invert sugar, water). Citric acid and invert sugar may be used for standardization purposes and these ingredients are GRAS.</td>
</tr>
<tr>
<td>9. Is there undesirable persistence or concentration of the material or its breakdown products in environment? [§6518 m.2]</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓, this substance is intended for food application. In case of accident-caused release the products are completely biodegradable.</td>
</tr>
<tr>
<td>10. Is there any harmful effect on human health? [§6517 c (1)(A)(ii); 6517 e(2)(A)(ii); §6518 m.4]</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓, the substance is actually beneficial for human health. It is fruit based and rich in antioxidants like e.g. anthocyanins.</td>
</tr>
<tr>
<td>11. Is there an adverse effect on human health as defined by applicable Federal regulations? [§205.600 b.3]</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓, the substance is manufactured from natural sources that have been consumed for years on a daily basis. Furthermore, the raw materials are known to have beneficial effects on human health.</td>
</tr>
<tr>
<td>12. Is the substance GRAS when used according to FDA's good manufacturing practices? [§205.600 b.5]</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓, currently, there is no GRAS exemption for color additives. For the F.D.A., all colors are considered artificial and are categorized under "certified" or "exempt from certification".</td>
</tr>
<tr>
<td>13. Does the substance contain residues of heavy metals or other contaminants in excess of FDA tolerances? [§205.600 b.5]</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓, see attached statement on residues</td>
</tr>
</tbody>
</table>

(1) The substance under review is for crops or livestock production, all of the questions from 205.600 (b) are N/A—not applicable.
Table: Is the Substance Essential for Organic Production?

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Is the substance formulated or manufactured by a chemical process?</td>
<td>✓</td>
<td></td>
<td></td>
<td>The substance is formulated from natural sources only and is processed only with water and physical processing. The production methods are certified organic under the USDA-NOP standards.</td>
</tr>
<tr>
<td>2. Is the substance formulated or manufactured by a process that</td>
<td>✓</td>
<td></td>
<td></td>
<td>The process is not intended to chemically change the substance. The elderberry is concentrated with the help of water and physical processing. Therefore, the properties of the substance are similar to the properties of the fruit.</td>
</tr>
<tr>
<td>chemically changes a substance extracted from naturally</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>occurring plant, animal, or mineral sources?</td>
<td>✓</td>
<td></td>
<td></td>
<td>The substance itself does not occur naturally, but it only contains natural constituents of the processed elderberry.</td>
</tr>
<tr>
<td>3. Is the substance created by naturally occurring biological processes?</td>
<td>✓</td>
<td></td>
<td></td>
<td>The substance is 100% natural. It is not formulated or processed with any synthetic aid or adjuvant.</td>
</tr>
<tr>
<td>4. Is there a natural source of the substance? [§205.600 b.1]</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Is there an organic substitute? [§205.600 b.1]</td>
<td>✓</td>
<td></td>
<td></td>
<td>The amount of raw materials that is processed for elderberry juice color is not commercially available as organic. A period of 10 years has been estimated as a minimum to be able to produce organically the amount of raw materials necessary.</td>
</tr>
<tr>
<td>6. Is the substance essential for handling of organically produced</td>
<td>✓</td>
<td></td>
<td></td>
<td>The substance is 100% natural. It is not formulated or processed with any synthetic aid or adjuvant.</td>
</tr>
<tr>
<td>agricultural products? [§205.600 b.6]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Is there a wholly natural substance product? [§6517 c (1)(A)(ii)]</td>
<td>✓</td>
<td></td>
<td></td>
<td>The substance is 100% natural but cannot be produced organically yet, as the raw materials are not commercially available as organic. Only the production methods are certified organic under the USDA-NOP standards. (see attached certificate)</td>
</tr>
<tr>
<td>8. Is the substance used in handling, not synthetic, but not</td>
<td>✓</td>
<td></td>
<td></td>
<td>All other colors "exempt from certification" are non-organic and are processed or formulated with the aid of synthetic substances. To avoid any synthetic ingredients in organic food, only organic, or as an interim solution non-organic, fruit and vegetable juice colors can be used to impact color and partly nutritious values to consumers' food.</td>
</tr>
<tr>
<td>organically produced? [§6517 c (1)(B)(ii)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Is there any alternative substances? [§6518 m.6]</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Is there another practice that would make the substance</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unnecessary? [§6518 m.6]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1If the substance under review is for crops or livestock production, all of the questions from 205.600 (b) are N/A—not applicable.
<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Is the substance compatible with organic handling? [205.600 b.2]</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substances</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. The substance is currently used in organic products. E.g. organic yogurt, ice cream, juices, dried fruits, etc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Is the substance consistent with organic farming and handling? [6517 c (3)(A)(iii); 6517 c (2)(A)(ii)]</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substances</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. The substance is from natural sources only and does not contain any synthetic ingredients or processing aid like solvents or emulsifiers. The production methods are certified organic under the USDA-NOP standards.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Is the substance compatible with a system of sustainable agriculture? [6518 m.7]</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substances</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Since the substance is derived only from natural sources it is compatible with sustainable agriculture and production.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Is the nutritional quality of the food maintained with the substance? [205.600 b.3]</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substances</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. The substance does contain almost all natural and valuable constituents of the processed elderberry.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Is the primary use as a preservative? [205.600 b.4]</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substances</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. This is not a preservative.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Is the primary use to recreate or improve flavors, colors, textures, or nutritive values lost in processing (except when required by law, e.g., vitamin D in milk)? [205.600 b.4]</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substances</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. This substance is not formulated or processed with any synthetic aid or adjuvant. This is a food having coloring properties.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Is the substance used in production, and does it contain an active synthetic ingredient in the following categories: a. copper and sulfur compounds;</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substances</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. toxins derived from bacteria;</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substances</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. pheromones, soaps, horticultural oils, fish emulsions, treated seed, vitamins and minerals?</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substances</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. livestock parasiticides and medicines?</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substances</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. production aids including netting, tree wraps and seals, insect traps, sticky barriers, row covers, and equipment cleaners?</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substances</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*If the substance under review is for crops or livestock production, all of the questions from 205.600 (b) are N/A—not applicable.

8

Decision Week
April 1, 2004
NOSB RECOMMENDED DECISION
Form NOPLIST2. Full Board Transmittal to NOP

For NOSB Meeting: ____________________________ Substance: ____________________________

A. Evaluation Criteria (Documentation attached; committee recommendation attached)

<table>
<thead>
<tr>
<th>Criteria Satisfied?</th>
<th>1. Impact on humans and environment</th>
<th>Yes ☐ No ☐ (see B below)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2. Availability criteria</td>
<td>Yes ☐ No ☐ (see B below)</td>
</tr>
<tr>
<td></td>
<td>3. Compatibility & consistency</td>
<td>Yes ☐ No ☐ (see B below)</td>
</tr>
</tbody>
</table>

B. Substance fails criteria?

<table>
<thead>
<tr>
<th>Criteria category</th>
<th>Basis for annotation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comments:</td>
<td>To meet criteria above: Criteria:</td>
</tr>
<tr>
<td></td>
<td>Other regulatory criteria: Citation:</td>
</tr>
</tbody>
</table>

C. Proposed Annotation:

D. Final Board Action & Vote: Motion by: ____________________________ Second: ____________________________

<table>
<thead>
<tr>
<th>Vote</th>
<th>Agricultural</th>
<th>Nonagricultural</th>
<th>Copra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Synthetic</td>
<td>Not synthetic</td>
<td>Livestock</td>
</tr>
<tr>
<td>No</td>
<td>Allowed¹</td>
<td>Prohibited¹</td>
<td>Husbanding</td>
</tr>
<tr>
<td>Abstain</td>
<td>No restriction</td>
<td>Deferred²</td>
<td>Rejected²</td>
</tr>
</tbody>
</table>

Annotation: __

1—substance voted to be added as “allowed” on National List

2—substance to be added to “prohibited” paragraph of National List

Describe why a prohibited substance:

3—substance was rejected by vote for amending National List

Describe why material was rejected:

4—substance was recommended to be deferred

Describe why deferred; if any follow-up is needed. If follow-up needed, who conducts follow-up?

E. Approved by NOSB Chair to transmit to NOP:

Dave Carter, NOSB Chair ____________________________ Date ____________________________

F. NOP Action: Include in PR to amend National List ☐

Return to NOSB ☐ Release ☐

Richard H. Mathews, Program Manager ____________________________ Date ____________________________
For NOSB Meeting: ____________________________
Substance: ________________________________

Committee: Crops ☐ Livestock ☐ Handling ☐

A. Evaluation Criteria (Documentation attached; committee recommendation attached)

4. Impact on humans and environment
 Criteria Satisfied? Yes ☐ No ☐ (see B below)

5. Availability criteria
 Criteria Satisfied? Yes ☐ No ☐ (see B below)

6. Compatibility & consistency
 Criteria Satisfied? Yes ☐ No ☐ (see B below)

C. Proposed Annotation:

B. Substance fails criteria?
Criteria category: ___________________________
Basis for annotation: _______________________
Comments: To meet criteria above: __________________
Criteria: __________________
Other regulatory criteria: __________________
Citation: __________________

D. Recommended Committee Action & Vote:
Motion by: ____________________________
Seconded: ____________________________

Vote:
Yes: ____________________________
No: ____________________________
Abstain: ____________________________

Synthetic ☐ Not synthetic ☐ Livestock ☐
Allowed? ☐ Prohibited? ☐ Handling ☐
No restriction ☐ Deferred? ☐ Rejected? ☐

Annotation:
1—substance voted to be added as "allowed" on National List
2—substance to be added to "prohibited" paragraph of National List
3—substance was rejected by vote for amending National List
4—substance was recommended to be deferred
 Describe why a prohibited substance; ______
 Describe why material was rejected; ______
 Describe why deferred; if follow-up is needed, who will follow up; ______

E. Approved by Committee Chair to transmit to NOSB:
Committee Chair: ___________________________
Date: ____________________________
GNT USA Inc. hereby confirms that:

The raw materials used for EXBERRY® products originate from direct cultivation and suppliers are obliged to comply with the legal European requirements governing the cultivation of fruits and vegetables. Other raw materials of supplying companies have to comply to the current European legislations for the specific material before it is purchased.

Pesticides:
Any pesticides residues left on or in the raw materials designed for the manufacture of EXBERRY® products do not exceed the maximum residue limits specified in the Council Directive 90/642/EEC of November 27, 1990 on the fixing of maximum levels for pesticide residues in and on certain products of plant origin, including fruit and vegetables and its amendments.

Any pesticide residues in EXBERRY® products do not exceed the maximum residue limits specified in the Directive 90/642/EEC (and amendments).

So far, neither organochlorine pesticides nor organophosphorous pesticides have been traced in our products. The same applies to other pesticide residues, with the current limits of determination being as follows:

... organochlorine pesticides: 0.001 - 0.005 mg/kg
... organophosphorous pesticides: 0.005 - 0.010 mg/kg
... other pesticide residues: 0.005 - 0.05 mg/kg

Heavy metals:
Regarding the maximum levels for heavy metals there are no defined maximum levels for EXBERRY® products (fruit and vegetables concentrates) within the European legislation.

Our EXBERRY® products do normally not exceed the following max levels:

Asbestos < 3 mg/kg
Cadmium < 1 mg/kg
Mercury < 1 mg/kg
Lead < 10 mg/kg
Heavy metals (as lead) < 40 mg/kg

Mycotoxins:
EXBERRY® products are in compliance with the current European food legislation (Directive 1998/29/EC, 2006/79/EC, etc.).

To ensure compliance with the above mentioned regulations, all raw materials and semi-finished products designed for the production of EXBERRY® products are regularly screened for pesticide residues, heavy metals and other contaminants.

The frequency of the analyses depend on the processing of the raw materials. The raw materials for EXBERRY® products are normally processed per campaign or season, depending on the amount of processed raw material a certain number of samples are taken and analysed.

Exposure statement: EU-318/018
EXBERRY® is a registered Trade Mark of GNT mbH, Germany
EXBERRY® Natural Colours are produced by GNT Nederland B.V., Netherlands

The information contained herein or any other information given by us is, to the best of our knowledge and belief, accurate. However, since the conditions of handling and use are beyond our control, we do not guarantee any results, and we are not liable for any damage incurred by following these suggestions. Nothing contained herein is to be construed as a recommendation for use in violation of any patents or of applicable laws or regulations.
PROCESS FLOW DIAGRAM
EXBERRY® Fruit and Vegetable Juice Color

CONFIDENTIAL

EXBERRY® is a registered Trade Mark of GNT International B.V., Netherlands
EXBERRY® is produced by GNT Nederland B.V., Netherlands.

The information contained herein or any other information given by us is, to the best of our knowledge and belief, accurate. However, since the conditions of handling and use are beyond our control, we do not guarantee any results, and we are not liable for any damage incurred by following these suggestions. Nothing contained herein is to be construed as a recommendation for use in violation of any patents or of applicable laws or regulations.

Process Flow Diagram No.: USA-not applicable (5/9999)

CBI-deleted
CERTIFICATE

CERTIFICATE No.: C803789NOP-01.2005
REGISTRATION No.: SKAL-INT 803789

Field of attention:
Organic production methods
USDA-NOP

Issued to:
GNT Nederland BV
Mierlo, NETHERLANDS
Project in: NETHERLANDS

Standard:
The National Organic Programme of the United States Department of Agriculture and Skal International Standards

Date of certification: 9 November 2005

Skal International declares to have inspected the unit(s), and/or product(s) of the above mentioned client, and have found them in accordance with the standards mentioned above. This certificate covers the unit(s), and/or product(s) as mentioned in the authenticated annex of this certificate.

This certificate is in force until further notice, provided that the above-mentioned client continues meeting the conditions as laid down in the client contract with Skal International. Based on the annual inspections that Skal International performs, this certificate is updated and kept into force.

Date of certification:
9 November 2005

Place and date of issue:
Zwolle, 9 November 2006

On behalf of the Managing Director
Mr. J. Hulsmann
Certifier

Skal International
P.O. Box 161
8000 AD Zwolle
The Netherlands
http://www.skal-int.com
tel.: +31(0)38-425.01.00
MATERIAL SAFETY DATA SHEET
EXBERRY®
Generic MSDS for EXBERRY® Products

Product No.: not applicable

May be used to comply with OSHA's Hazard Communication Standard. 29 CFR 1910.1200 Standards must be consulted for specific requirements. If any item is not applicable, or no information is available, the space must be marked to indicate that.

SECTION I. Product Identification

Manufacturer's name: GNT International B.V.

Telephone number: +31 - (0)492 681 141
Address: P.O. Box 94, 5731 AB Mierlo, The Netherlands

Product name: EXBERRY® Generic MSDS for EXBERRY®
Product No.: not applicable

Botanical family: not applicable
Formula: Preparation manufactured from:
fruits invert sugar
vegetables citric acid

SECTION II. Hazardous ingredients/Identity Information

Specific chemical identity; CAS #: ACGIH TLV (Units); OSHA PEL (Units); STEL (Units)
Not applicable. Foodstuff.

SECTION III. Physical/Chemical Characteristics

Boiling point: 215-230 °F
Vapor pressure: < 50 mbar (70 °F)
Vapor density (AIR=1): not available
Solubility in water: soluble

Material Safety Data Sheet No.: USA= not applicable 13/06 13.06.06 page 1

The information contained herein or any other information given by us is, to the best of our knowledge and belief, accurate. However, since the conditions of handling and use are beyond our control, we do not guarantee any results, and we are not liable for any damage incurred by following these suggestions. Nothing contained herein is to be construed as a recommendation for use in violation of any patents or of applicable laws or regulations.
Appearance and odor: viscous and aromatic
Specific gravity (H2O=1): 1.28 - 1.38
Percent volatile, by volume (%): not available
Evaporation rate (butyl acetate=1): not available (very small)
Freezing point: less than 0 °F

SECTION IV. Fire and Explosion Hazard Data
Flash point (method used): not available
Flammable limits: not available
LEL: not available
UEL: not available
Extinguishing media: water etc.
Special fire fighting procedures: not necessary
Unusual fire and explosion hazards: none known

SECTION V. Reactivity Data
Stability
Unstable: no
Stable: yes
Conditions to avoid: not applicable
Incompatibility (materials to avoid): strong acids and bases, sulfides and sulfites
Hazardous polymerization
May occur: no
Will not occur: certain
Conditions to avoid: not applicable

SECTION VI. Health Hazard Data
Route(s) of entry
Inhalation: no
Skin: no
Ingestion: yes

Health hazards (acute and chronic)
Carcinogenicity: no
NTP: no
LARC monographs: no
OSHA regulated: no

Signs and symptoms of exposure: foodstuff, no health hazards.

Material Safety Data Sheet No.: USA-not applicable 13/06/06 13. 06. 06 page 2
EXBERRYS® is a registered Trade Mark of GNT mbH, Germany
EXBERRYS® Natural Colors are produced by GNT Niederland B.V., Netherlands

The information contained herein or any other information given by us is, to the best of our knowledge and belief, accurate. However, since the instructions of handling and use are beyond our control, we do not guarantee any results, and we are not liable for any damage incurred by following these suggestions. Nothing contained herein is to be construed as a recommendation for use in violation of any patents or of applicable laws or regulations.
Medical conditions generally aggravated by exposure: In case of contact with eyes, remove contact lenses and rinse immediately with plenty of water. Contact physician if irritation persists. not necessary

Emergency and first aid procedures:

SECTION VII. Precautions for Safe Handling and Use

Steps to be taken in case material is released or spilled: clean with water

Precautions to be taken in handling and storage: special precautions are not necessary.

Other precautions: not necessary

SECTION VIII. Control Measures

Respiratory protection (specify type): not necessary

Ventilation

Local exhaust: not necessary
Special: not necessary
Mechanical: not necessary
Other: not necessary

Protection gloves: not necessary (strong coloring foodstuffs)

Eye protection: not necessary

Other protective clothing or equipment: not necessary

Workhygienic practices: same as foodstuffs
January 15, 2007

Robert L. Pooler
National Organic Program, AMS / USDA
STOP 0286 – Room 400BS
1400 Independence Avenue SW
Washington, DC 20250-0286

Re: Petitions for the Addition of
Non-Organic Agricultural Substances to the National List
Pursuant to Section 205.606 of the NOP

Dear Mr. Pooler:

Thank you for your letter dated December 20, 2006, wherein you returned our original "combined" petition for fifteen natural colorants (dated October 16, 2006) and instructed us to file fifteen "separate" petitions, one for each colorant.

Pursuant to your instructions, please find enclosed with this letter fifteen (15) separate petitions, one for each natural colorant. We enclose an original and one copy of each petition for you to review. We ask the National Organic Standards Board (NOSB) to add onto the National List the following natural colorants:

- **Anthocyanins**: (1) chokecherry juice, (2) black current juice, (3) red cabbage extract, (4) purple carrot extract, (5) elderberry juice, (6) grape juice, (7) grape skin extract, (8) red radish extract; and

- **Carotenoids**: (9) annatto seed extract, (10) beta-carotene from carrots, (11) lycopene, (12) paprika, (13) saffron; and

- **Betelaines**: (14) beet juice; and

- **Other**: (15) turmeric.

You may recall that our original petition was organized by the four categories shown above. It may be prudent -- in the interest of time -- for the NOSB to consider the enclosed petitions in these same categories / groups.
5. The source of the substance and a detailed description of its manufacturing or processing procedures: Elderberries grow on shrubs throughout Northern and Central Europe. The berries are collected, washed, and cut into small pieces. The pieces are soaked in water. After 42–78 hours, the liquid is mechanically filtered and concentrated, producing a dark, blue-red liquid concentrate composed of the same anthocyanin molecules produced inside the berries.

6. A summary of any available previous reviews by State or private certification programs or other organizations of the pettifogged substance: No such government reviews of elderberry juice are known; but anthocyanins (particularly from grapes) have been used since antiquity in color human foods and are Generally Regarded As Safe (GRAS).

7. Information regarding EPA, FDA, and State Regulations: FDA permits the use of elderberry juice as a color additive exempt from certification. 21 CFR 73.250. Fruit Juices. Elderberry juice is also permitted as a natural color additive in foods in the European Union (E163) and throughout Asia.

8. The Chemical Abstract Service (CAS) number: There is no specific CAS Number for elderberry juice; however, anthocyanins in general have been assigned CAS No. 11029-12-2.

9. The substance’s physical properties and chemical mode of action: The anthocyanins extracted from elderberries are distinct and unique molecules. They are different from carotenoids and betalains (other molecules used as natural colorants). Anthocyanins are sensitive to the pH of their surrounding environment, appearing red in an acidic pH (pH < 4.5) and blue in an alkaline pH (pH > 8.5). In addition, anthocyanins display strong antioxidant properties which may be beneficial to human health. Beyond these unique properties, anthocyanins do not interact with substances used in organic food production and have no impact on the environment.

Elderberries have been consumed for centuries and their growth and ultimate consumption has the same impact on the environment as organically grown, biodegradable fruits and vegetables.

10. Safety information about the substance: Please see the attached Material Safety Data Sheet (MSDS). Elderberries, and the anthocyanins extracted from elderberries, are GRAS.

11. Research information about the substance: See the attached Bibliography. A leading American researcher on anthocyanins is Professor Ron Wrolstad, Dept. of Food Science, University of Oregon, Corvallis, OR 97331. Dr. Wrolstad recently retired, but he can still be reached at the University.
12(G) Justification Statements.

Enhanced Visual Appeal Using Natural Colorants. Food safety dictates that processed foods must be fully cooked to assure low bacterial counts for extended shelf-life and broad geographical distribution. Many food and beverage processors also employ a low pH environment and/or low water activity and/or low temperature distribution of the finished product (refrigeration or freezing) to further assure minimal bacterial counts. These processing parameters are challenging to colorants residing inside the “core food” (for example, chlorophyll inside florets of broccoli, beta-carotene inside cut carrots, or anthocyanins inside strawberry preserves).

The addition of natural colorants compensates for the “original” colorants destroyed by high temperatures / low pH processing. In so doing, the finished organic food or beverage product presents to the consumer the same visual appeal it would have if it were fresh. The addition of natural colorants can also enhance an existing color, making the organic food or beverage even more appealing; or it may extend the shelf-life of an organic food or beverage, making it available to more consumers both over time and geographical distance.

Without the addition of natural colorants, organic food and beverage products might lack the visual appeal and attraction of their direct non-organic competition. Thus, natural colorants help organic processors compete.

In so doing, natural colorants advance the organic philosophy by (literally) displaying to consumers visually appealing organic food and beverage products brightly colored without artificial colors such as FD&C Yellow 5.

Low Usage Levels of Natural Colorants. Because natural colorants are concentrated and very strong, they are used in organic food and beverage products at very low levels, typically less than 1%. The inherent strength of natural colorants sets in motion or “triggers” two distinct events: (1) natural colorants always fall under the 95/5 rule where five percent of the ingredients in an organic product may be non-certified; and (2) the volume of natural colorants purchased is very small.

By way of example, a hypothetical organic dairy develops organic certified yogurt. First, new product developers add elderberry juice at 0.5% of the total formula. They do not actively seek out organic certified elderberry juice because they know the ingredient easily falls under the 95/5 rule. Second, the dairy’s new product is successful and within the first year it produces 500 tons of organic certified yogurts. Despite such success, the dairy would purchase only 833 lb of elderberry juice per month. This low volume of natural colorant sales, combined with inclusion of natural colorants in the “five percent non-certified” portion of the formula, provides little economic incentive to certify natural colorants as organic.

Petition for the Addition of Non-organic Agricultural Substance
To the National List Pursuant to Section 205.908
In the future, we anticipate the total amount of organic food and beverage products to increase. We may reach a point in time where a strong economic incentive places natural colorants crops under organic systems of production. It should be noted that no ingredient may remain on the National List for more than five (5) years without review by the National Organic Standards Board (NOSB).

The NOSB must therefore review the status of natural colorants five years hence (roughly 2012) and, at that time, may discover that an adequate supply of natural colorants is available for use in organic foods and beverages.

International Production of Natural Colorants. Most natural colorants are derived from International fruit and vegetable crops grown in developing countries; there is little International acreage certified organic. Most international organic acreage is utilized for corn, sugar and grains. Further, organic certification of international acreage remains problematic, plagued by cultural, financial, and language difficulties. Moreover, most fruit and vegetable crops are typically consumed where they are grown. As a result, there is a limited supply of the requisite fruit and vegetable crops needed for the creation of natural colorants.

Thus, natural colorants are not available in the appropriate quantity from International sources to meet the needs of organic processors.

Domestic Production of Natural Colorants / The Current State of the US Organic Industry. Certified organic cropland and pasture accounted for about 0.5% of total US farmland in 2005. Only a small percentage of top US field crops – corn (0.2%), soybeans (0.2%), and wheat (0.5%) – were grown under certified organic farming systems. Organic carrots (6% of the US carrot acreage), organic lettuce (4% of US lettuce acreage), and organic apples (5% of US apple acreage) were more commonly grown organic.

Markets for organically grown fruits and vegetables have been developing for decades in the US, and fresh produce is still the top-selling organic category in retail sales. Organic livestock was beginning to catch up with produce in 2005, with 1% of US dairy cows and 6.6% of the layer hens managed under certified organic systems. After decades of strong growth, the US organic marketplace is a bountiful “Farmer’s Market” for consumers, but it does not supply the appropriate quantity of natural colorants for organic food processors.

Because there is no current supply of organic certified natural colorants from International sources, and because there is no current supply of organic certified natural colorants from US sources, and because natural colorants at levels below 5% greatly improve the visual appearance of organic foods and beverages, this Petition seeks the addition of natural colorants to the National List.

Petition for the Addition of Non-organic Agricultural Substance
To the National List Pursuant to Section 205.695
Page 4 of 9 – January 15, 2007
13. This Petition respectfully seeks the addition of elderberry juice, a.k.a. "elderberry," to the National List as a non-organic agricultural product under Section 205.906 of the NOP.

Respectfully Submitted,

COLOMAKER, INC.,
a California corporation

By: [Signature]
(Name & Title)

DD WILLIAMSON, INC.,
a Kentucky corporation

By: [Signature]
(Name & Title)

VP Science & Innovation

Petition for the Addition of Non-organic Agricultural Substance
To the National List Pursuant to Section 205.906
Page 5 of 9 – January 15, 2007
MATERIAL SAFETY DATA SHEET

1. Product Identification:
 1.1 Product Name: Standard Elderberry Juice
 1.2 Product Number: 2747
 1.3 Ingredient Statement: Fruit juice
 1.4 Description of Product: A dark red liquid designed to color and function in food and beverage products. Specific formulation is withheld as a trade secret pursuant to 21 CFR 20.81. The characterizing principles and/or other components of this color blend are approved and are in compliance with 21 CFR 73. None of the ingredients appear on the list of hazardous items established under California's Proposition 65.

2. Hazardous Ingredients and Exposure Limits:
 2.1 It is our opinion that the above named product does not meet the definition of a "Hazardous Chemical" as defined in 21 CFR 1910.1200. This MSDS is provided as general information for health and safety reasons.

3. Health Hazard Data
 3.1 Carcinogenic: None known.
 3.2 Acute Toxicity: None known.
 3.3 Oral LD50: Not determined.
 3.4 Dermal LD50: Not determined.
 3.5 Ingestion: None known.
 3.6 Skin Contact: None known.
 3.7 Irritation (skin): None known.
 3.8 Irritation (eye): May cause slight irritation.
4. **First Aid Measures**

4.1 Eye Contact
Remove contact lenses and flush eyes with copious amount of water for at least fifteen minutes. Contact physician if irritation persists.

4.2 Skin Contact
No significant health hazard. Wash exposed skin with soap and water for at least fifteen minutes. If irritation persists, consult a doctor.

4.3 Ingestion
Administer 1 - 2 glasses of water or milk to dilute. DO NOT INDUCE VOMITING. Seek medical attention if it seems advisable.

5. **Fire Fighting Measures**

5.1 Flash Point (method used)
Not determined.

5.2 Flammable Limits
Not determined.

5.3 Unusual Fire & Explosion Hazard
None known.

5.4 Extinguishing Media
Carbon dioxide, dry chemical, foam, and water spray.

6. **Spill, Leak, and Waste Disposal**

6.1 Absorb spills on vermiculite or other absorbent materials. Remove to approved disposal containers. Use rag and mop to clean small spots or dilute with large amounts of water. Colorant is biodegradable.

7. **Handling and Storage**

7.1 Store in a cool dry area. The wearing of rubber gloves and safety glasses to prevent skin and eye contact is recommended. Store in tightly closed containers.
8. Exposure Protection

8.1 Respiratory No special equipment under normal conditions of use.
8.2 Skin Skin protection appropriate to use conditions.
8.3 Eye Safety glasses must be worn at all times.
8.4 Hand Suitable gloves.
8.5 Other None

9. Physical / Chemical Characteristics

9.1 Appearance Dark red liquid
9.2 Boiling Point Not established
9.3 Vapor Pressure Not established
9.4 pH value 7.0
9.5 Solubility in Water Complete
9.6 Specific Gravity To be established

10. Stability and Reactivity

10.1 Stability Stable.
10.2 Incompatibility Avoid strong oxidizing agents.
10.3 Hazardous Decomposition Not known.
10.4 Hazardous Polymerization Not known.

11. Toxicological Health Hazards

11.1 None known. Colorant is naturally derived and biodegradable.

12. Ecological Effects

12.1 None known. Colorant is naturally derived and biodegradable

13. Disposal Considerations

13.1 Incineration. Observe local, State, and Federal regulations concerning health and the environment. Do not incinerate in sealed containers.

The information contained herein is based upon data considered accurate and reliable. Nevertheless, an independent investigation and verification of this information should be made by the user. No warranty is made, expressed or implied, regarding the accuracy or completeness of these data. The use of this information and this product are beyond the control of ColorMaker, Inc. Therefore, it is the sole responsibility of the user to determine the conditions necessary for the safe use of this product.
Bibliography

Francis, F.J. (Jack), *Colorants*, Eagan Press, Publishers; Copyright 1996.

Hutchings, J.B., *Food Colour and Appearance*, Blackie Academic & Professional (UK), Publisher; Copyright 1994.

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
<th>NA</th>
<th>Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Are there adverse effects on environment from manufacture,</td>
<td>X</td>
<td></td>
<td></td>
<td>Petition, FDA regulations</td>
</tr>
<tr>
<td>use, or disposal? [205.600 b.2]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[205.600 m.3]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Is there environmental contamination during manufacture, use,</td>
<td>X</td>
<td></td>
<td></td>
<td>Petition, FDA regulations</td>
</tr>
<tr>
<td>mixture, or disposal? [205.600 m.3]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[6517c(1)(K)(1)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[6517c(2)(A)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Is the substance harmful to the environment?</td>
<td>X</td>
<td></td>
<td></td>
<td>Petition, FDA Regulations</td>
</tr>
<tr>
<td>[6517c(1)(K)(1)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[6517c(2)(A)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Does the substance contain List 1, 2, or 3 inert?</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>[6517c(1)(K)(6); 205.600(m)];</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Is there potential for detrimental chemical interaction,</td>
<td>X</td>
<td></td>
<td></td>
<td>Petition, FDA Regulations</td>
</tr>
<tr>
<td>with other materials used?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[6518 m.1]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Are there adverse biological and chemical interactions in</td>
<td>X</td>
<td></td>
<td></td>
<td>Petition, FDA Regulations</td>
</tr>
<tr>
<td>ecosystems? [6518 m.5]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Are there detrimental physiological effects on soil</td>
<td>X</td>
<td></td>
<td></td>
<td>Petition, FDA Regulations</td>
</tr>
<tr>
<td>organisms, crops, or livestock? [6519 m.5]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Is there a toxic or other adverse action of the material or its</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>breakdown products? [6518 m.2]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Is there undesirable persistence or concentration of the material</td>
<td>X</td>
<td></td>
<td></td>
<td>Petition, FDA Regulations</td>
</tr>
<tr>
<td>or breakdown products in environment? [6518 m.2]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[6517c(1)(K)(1)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[6517c(2)(A)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Is there any harmful effect on human health?</td>
<td>X</td>
<td></td>
<td></td>
<td>Petition, FDA Regulations</td>
</tr>
<tr>
<td>[6517c(1)(K)(1)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[6517c(2)(A)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[6518 m.4]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Is there an adverse effect on human health as defined by</td>
<td>X</td>
<td></td>
<td></td>
<td>Petition, FDA Regulations</td>
</tr>
<tr>
<td>applicable Federal regulations? [205.600 b.3]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Petition for the Addition of Non-organic Agricultural Substances
To the National List Pursuant to Section 205.106
Page 7 of 9 — January 15, 2007
<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Is the substance a natural source of the substance? [205.600(b)(1)]</td>
<td></td>
<td>X</td>
<td></td>
<td>Petition</td>
</tr>
<tr>
<td>2. Is the substance generally recognized as safe (GRAS) [205.600(b)(3)]</td>
<td></td>
<td>X</td>
<td></td>
<td>Petition</td>
</tr>
<tr>
<td>3. Is the substance essential for handling or processing of an agricultural product? [205.600(b)(6)]</td>
<td></td>
<td>X</td>
<td></td>
<td>Petition</td>
</tr>
<tr>
<td>4. Is the substance a wholly natural substitute product? [65517; 65518]</td>
<td></td>
<td>X</td>
<td></td>
<td>Petition, FDA Regulations</td>
</tr>
<tr>
<td>5. Is the substance used in handling not synthetic, but not organically produced? [65517; 65518]</td>
<td></td>
<td>X</td>
<td></td>
<td>Petition, FDA Regulations</td>
</tr>
<tr>
<td>6. Are any alternative substances? [65517; 65518]</td>
<td></td>
<td>X</td>
<td></td>
<td>Petition, FDA Regulations</td>
</tr>
<tr>
<td>7. Is there another practice that would make the substance unnecessary? [65517; 65518]</td>
<td></td>
<td>X</td>
<td></td>
<td>Petition, FDA Regulations</td>
</tr>
</tbody>
</table>

If the substance under review is for crops or livestock production, all of the questions from 205.600 (b) are N/A—not applicable.

Petition for the Addition of Non-organic Agricultural Substance
To the National List Pursuant to Section 205.600
Page 8 of 9 – January 15, 2007
Category 3. Is the substance compatible with organic production? Substance: ELDERBERRY JUICE

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Documentation (TAP, petition, regulatory agency, other)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Is the substance compatible with organic handling? ([205.600 b.3])</td>
<td></td>
<td>X</td>
<td></td>
<td>Petition, FDA Regulations</td>
</tr>
<tr>
<td>2. Is the substance consistent with organic farming and handling? ([65517 c (1)(xiii), 8517 c (2)(A)(B)])</td>
<td>X</td>
<td></td>
<td></td>
<td>Petition, FDA Regulations</td>
</tr>
<tr>
<td>3. Is the substance compatible with a system of sustainable agriculture? ([6518 m.7])</td>
<td>X</td>
<td></td>
<td></td>
<td>Petition, FDA Regulations</td>
</tr>
<tr>
<td>4. Is the nutritional quality of the food maintained with the substance? ([205.600 b.3])</td>
<td></td>
<td>X</td>
<td></td>
<td>Petition, FDA Regulations</td>
</tr>
<tr>
<td>5. Is the primary use as a preservative? ([205.600 b.4])</td>
<td></td>
<td>X</td>
<td></td>
<td>Petition, FDA Regulations</td>
</tr>
<tr>
<td>6. Is the primary use to enhance or improve flavors, colors, textures, or nutrient values lost in processing (except when required by law, e.g., vitamin D in milk)? ([205.600 b.4])</td>
<td></td>
<td>X</td>
<td></td>
<td>Petition, FDA Regulations</td>
</tr>
<tr>
<td>7. Is the substance used in production, and does it contain an active synthetic ingredient in the following categories:</td>
<td></td>
<td>X</td>
<td></td>
<td>Petition, FDA Regulations</td>
</tr>
<tr>
<td>a. copper and similar compounds</td>
<td></td>
<td></td>
<td></td>
<td>Petition, FDA Regulations</td>
</tr>
<tr>
<td>b. extract derived from microorganisms</td>
<td>X</td>
<td></td>
<td></td>
<td>Petition, FDA Regulations</td>
</tr>
<tr>
<td>c. pheromones, scents, pheromonal scents</td>
<td>X</td>
<td></td>
<td></td>
<td>Petition, FDA Regulations</td>
</tr>
<tr>
<td>d. livestock parasiticides and pesticides</td>
<td>X</td>
<td></td>
<td></td>
<td>Petition, FDA Regulations</td>
</tr>
<tr>
<td>e. production aids including netting, net washes and screens, insect traps, sticky barriers, raw covers, and equipment cleaners</td>
<td>X</td>
<td></td>
<td></td>
<td>Petition, FDA Regulations</td>
</tr>
</tbody>
</table>

1. If the substance under review is for use in livestock production, all of the questions from 205.600 (b) are N/A— not applicable.

Petition for the Addition of Non-organic Agricultural Substance

To the National List Petitioner In Section 205.908

Page 9 of 9 – January 15, 2017
Petition to the National Organic Standards Board and the National Organic Program for the Addition of Elderberry Juice to the National List Section §205.606

Item A

This is a petition to amend the National List Section §205.606 to include Elderberry Juice as a non-organically produced agricultural product allowed as an ingredient in or on processed products labeled as “organic”.

Item B

1. Substance Common Name.

Elderberry Juice is the common name for juices pressed from the scientific varieties of Adoxaceae sambucus nigra.

Other names: Black Elder Juice

2. Manufacturers’ Names, Addresses, and Telephone Numbers.

This petition is submitted by the International Association of Color Manufacturers’ on behalf of our members.

International Association of Color Manufacturers’
1620 I Street NW, Suite 925
Washington, DC 20006
Phone: (202) 293-5800
Fax: (202) 463-8998

Contact: Sean Taylor, IACM Scientific Director
E-mail: staylor@therobertsgroup.net

Relevant member companies include (but are not limited to):

D.D. Williamson & Co., Inc.
1901 Payne Street
Louisville, KY 40206
USA

Wild Flavors, Inc.
1261 Pacific Avenue
Erlanger, KY 41018
USA

Chr. Hansen, Inc.
9015 West Maple Street
Milwaukee, WI 53214
USA

3. Intended or current use of the substance.
Elderberry Juice is a commonly used highly-colored juice that has applications in food as a coloring substance. It is used to color a variety of organic and non-organic foods, including flavoring mixtures, non-alcoholic beverages, concentrated non-alcoholic dry mixes, dairy products, breakfast cereals, fruit preparations, sauces, soups, and salad dressings. Depending upon the concentrations used, Elderberry Juice adds a bright red to blue-purple color to foods. Elderberry Juice is generally used at a very low level in foods, with typical concentrations of 0.05-0.1% in the final food product. As is described in 21 CFR 73.250, Elderberry Juice is approved by the Food and Drug Administration (FDA) for use at all concentrations that are considered Good Manufacturing Practices and that do not exceed those levels necessary to provide the intended coloring effect.

Elderberry Juice is currently used as a color additive in a variety of organic and non-organic food products. In organic foods, Elderberry Juice has been in use as an allowed non-synthetic ingredient under “Colors, non-synthetic sources only,” which is listed on the National List §205.605(a). However, the National Organic Standards Board has recommended that “Colors, non-synthetic sources only” be allowed to sunset off of the National List in October 2007. Therefore, Elderberry Juice must be added as an individual coloring substance onto the National List. Due to the minimal processing involved in its production, Elderberry Juice meets the current definition of an agricultural substance. This petition is to place Elderberry Juice as an allowed non-organic agricultural ingredient under §205.606 until a sufficient and consistent organic form of Elderberry Juice is commercially available to organic foods producers in the necessary form, quality and quantity that is needed to fulfill the demands of the organic industry.

4. List of crop, livestock, or handling activities for which the substance will be used. If used for handling (including processing), the substance’s mode of action must be described.

Elderberry Juice is used in handling only for food application as described above. The water-soluble extract is commonly added during formulation of the food product and it mixes homogenously with the aqueous phase. Elderberry Juice supplements the inherent natural color from the other ingredients in the food product formulation. This natural color is often partially or completely lost during heating steps involved in the processing. As is described above, Elderberry Juice is used at very low levels in food products, and it therefore is not known to impart any other technical effect in the food product.

5. The source of the substance and a detailed description of its manufacturing or processing procedures from the basic component(s) to the final product. Petitioners with concerns for confidential business information can follow the guidelines in the Instructions for Submitting Confidential Business Information (CBI) listed in #13.

Elderberry Juice is the juice used as a coloring material that is produced from the common elderberry, Adoxaceae sambucus nigra. In production of the juice, elderberries are harvested from elderberry bushes.
6. A summary of any available previous reviews by State or private certification programs or other organizations of the petitioned substance.

No previous reviews have been conducted to approve the use of Elderberry Juice as a nonorganically-produced agricultural product allowed as an ingredient in or on foods labeled as ‘organic’ or ‘made with organic’. Currently, all food coloring substances that are non-synthetic are on the National List, Section 205.605(a), under “Colors, Non-Synthetic Sources Only” (the NOSB was provided with a technical advisory panel review of “Colors, Non-Synthetic Sources Only” that was completed in October 2005. It is included as Attachment #1 to this petition). However, the National Organic Standards Board has recommended that ‘Colors, Non-Synthetic Sources Only’ not be renewed to the National List, and it is therefore scheduled to sunset from the National List effective October 22, 2007. Given this regulatory history, no state or private certification programs are known to have conducted reviews of Elderberry Juice.

Information about Elderberry Juice or other forms of elderberry products sold as organic will be found in this petition. Please see Item B Nos. 11 & 12, Petition Justification Statement.

While to the best of our knowledge no other reviews have been completed for Elderberry Juice, reviews of anthocyanins, the predominant coloring components in Elderberry Juice, have been done. They include the Summary of Evaluations Performed by the Joint FAO/WHO Expert Committee on Food Additives (JECFA). The evaluation of anthocyanins may be found at: http://www.inchem.org/documents/jecfa/jecmono/v17je05.htm and is included here as Attachment #2.

The Canadian Organic Standards, that were published September 2, 2006, include colors for use in food products under the following listing: §5.4.2.1 Colouring, natural, from non-synthetic sources only and shall not be produced using synthetic solvents and carrier systems or any artificial preservative.

7. Information regarding EPA, FDA, and State regulatory authority registrations, including registration numbers.

Elderberry Juice conforms in every aspect to the requirements mandated by the Federal Food, Drug, and Cosmetic Act. Elderberry Juice used as a coloring material is fully consistent with 21 CFR 73.250:
Sec. 73.250 Fruit juice.

(a) Identity. (1) The color additive fruit juice is prepared either by expressing the juice from mature varieties of fresh, edible fruits, or by the water infusion of the dried fruit. The color additive may be concentrated or dried. The definition of fruit juice in this paragraph is for the purpose of identity as a color additive only and shall not be construed as a standard of identity under section 401 of the act. However, where a standard of identity for a particular fruit juice has been promulgated under section 401 of the act, it shall conform to such standard.

(2) Color additive mixtures made with fruit juice may contain as diluents only those substances listed in this subpart as safe and suitable in color additive mixtures for coloring foods.

(b) Uses and restrictions. Fruit juice may be safely used for the coloring of foods generally, in amounts consistent with good manufacturing practice, except that it may not be used to color foods for which standards of identity have been promulgated under section 401 of the act, unless the use of added color is authorized by such standards.

(c) Labeling. The color additive and any mixtures intended solely or in part for coloring purposes prepared therefrom shall bear, in addition to the other information required by the act, labeling in accordance with the provisions of Sec. 70.25 of this chapter.

(d) Exemption from certification. Certification of this color additive is not necessary for the protection of the public health, and therefore batches thereof are exempt from the certification requirements of section 721(c) of the act.

No listing for Elderberry Juice was found in the Environmental Protection Agency’s (EPA) Substance Registry System (SRS).

Like all coloring materials, Elderberry Juice cannot obtain Generally Regarded as Safe (GRAS) status for its use as a color additive, and obtaining GRAS status for use as a color additive is not necessary. As is detailed in the Frequently Asked Questions (FAQ) section of the FDA’s GRAS guidance website (http://www.cfsan.fda.gov/~dms/grasguid.html#Q6):

Is a substance that is used to impart color eligible for classification as GRAS?

The short answer is "No." Under section 201(s) of the Act, the GRAS provision applies to the definition of a food additive. There is no corresponding provision in the definition (in section 201(t) of the Act) of a color additive.

However, under section 201(t)(1) and 21 CFR 70.3(f), the term color additive means a material that is a dye, pigment, or other substance
made by a process of synthesis or similar artifice, or extracted, isolated, or otherwise derived from a vegetable, animal, mineral, or other source, and that is capable (alone or through reaction with another substance) of imparting color when added or applied to a food; except that such term does not include any material which FDA, by regulation, determines is used (or intended to be used) solely for a purpose or purposes other than coloring. Under 21 CFR 70.3(g), a material that otherwise meets the definition of color additive can be exempt from that definition on the basis that it is used or intended to be used solely for a purpose or purposes other than coloring, as long as the material is used in a way that any color imparted is clearly unimportant insofar as the appearance, value, marketability, or consumer acceptability is concerned. Given the construct of section 201(t)(1) of the Act and 21 CFR 70.3(f) and (g), the use of a substance that is capable of imparting color may constitute use as both a color additive and as a food additive or GRAS substance. For example, beta-carotene is both approved for use as a color additive (21 CFR 73.95) and affirmed as GRAS for use as a nutrient (21 CFR 184.1245); in some food products, beta-carotene may be used for both purposes.

8. The Chemical Abstract Service (CAS) number or other product numbers of the substance and labels of products that contains the petitioned substance. If the substance does not have an assigned product number, this fact should be reported.

Chemical Abstracts Service (CAS) No.:
- 528-58-5 (for cyanidin, the predominant anthocyanin coloring component in Elderberry Juice)
- 528-53-0 (for delphinidin, an anthocyanin coloring component in Elderberry Juice)
- 643-84-5 (for malvidin, an anthocyanin coloring component in Elderberry Juice)
- 134-01-0 (for peonidin, an anthocyanin coloring component in Elderberry Juice)
- 1429-30-7 (for petunidin, an anthocyanin coloring component in Elderberry Juice)
- 134-04-3 E163 (for pelargonidin, an anthocyanin coloring component in Elderberry Juice)

European Community (EC) No.:
- E163 (for anthocyanins)

Color Index No.: None found

Please see Attachment #3 for label(s) of products that contain the petitioned substance.

9. The substance's physical properties and chemical mode of action including (a) chemical interactions with other substances, especially substances used in organic production; (b) toxicity and environmental persistence; (c) environmental impacts from its use or manufacture; (d) effects on human health; and, (e) effects on soil organisms, crops, or livestock.

Elderberry Juice is a dark red-to-purple liquid. The major coloring principles of Elderberry Juice are anthocyanins. Elderberry Juice is soluble in water, and mainly insoluble in oil. It is miscible with ethanol.

Anthocyanins are polyphenolic natural pigments that are widely distributed in the plant kingdom where they occur as glycosides (i.e., associated with a sugar moiety) in combinations that produce orange, red, blue, or purple coloration in a variety of fruits and vegetables. Commercial production of anthocyanins for use as coloring materials began roughly 30 years ago. They are obtained from edible fruits and vegetables, and traditional sources are black currant fruits, elderberry, and grapes. The chemical structure of the most commonly occurring anthocyanins that are found in fruits and berries are shown below.
Water-soluble anthocyanin pigments such as 3-mono-and 3,5-di-glucosides of malvidin, delphinidin and cyanidin, as well as their acyl ester derivatives, are responsible for the orange, red, blue, and purple colors of anthocyanin-containing fruits. The color intensity increases as pH falls, with stability being greatest below pH 4.5. Fruit extracts that contain anthocyanins are stable to light and temperature, but they are sensitive to oxygen, SO2 concentration, and the presence of metal ions such as iron, tin, and aluminum which cause them to produce a bluer color (Marmion, 1991).

(a) Chemical interactions with other substances, especially substances used in organic production.

There are no reports of chemical interactions with other substances used in organic production of the food products in which Elderberry Juice is used as a coloring material.

(b) Toxicity and environmental persistence.

No relevant toxicity or environmental studies for Elderberry Juice were found. As anthocyanins are the predominant coloring pigments found in Elderberry Juice, data found for them is summarized below.

Genotoxicity

Acute Toxicity
The extremely low acute oral toxicity of mixed anthocyanins (cyanidin, delphinidin, petunidin, and malvidin) is demonstrated by mouse and rat LD50 values greater than 25 and 20 g/kg bw, respectively (Pourrat et al., 1967). Welch’s grape color extract administered to rats at 0, 5, 10, 15 and 20% of the diet produced no toxic signs or effects over the 30 day testing period (Stevens and Gallo, 1977).

Long-term Toxicity
No overt signs of toxicity were seen in rats given oral doses of 3000 mg/day mixed anthocyanins for 90 days (Pourrat et al., 1967). No adverse effects occurred when dogs were fed a diet containing 15% grape color powder for 13 weeks (Becci et al., 1983a) or grape color extract for 90 consecutive days (Cox and Babish, 1978).

Reproductive/Developmental Toxicity
No adverse effects on reproduction occurred when grape color extract was fed to rats at dietary levels of 7.5 % and 15 % through two generations (Becci et al., 1983b; Cox and Babish, 1978). There were no teratogenic effects in multi-generation studies with rats, mice, or rabbits (Pourrat et al., 1967).

Metabolism
Anthocyanins are not readily absorbed from the intestine and the small quantity absorbed appears to be excreted by the kidney in its unchanged form (Horwitt, 1933).

Environmental persistence
There is no evidence of environmental persistence from the production of Elderberry Juice or anthocyanins used as a coloring material in foods.

(c) Environmental impacts from its use or manufacture;

There are no environmental impacts from the production of Elderberry Juice or its use in foods.

(d) Effects on human health

As described above, no studies have been conducted to gauge the genotoxicity, acute or chronic toxicity, or reproductive toxicity of Elderberry Juice. Elderberries have a long history of being used for human consumption, primarily in alcoholic beverages (elderberry wine and elderberry brandy, in particular). No human health concerns have been noted through the use of elderberries in any of these products. Elderberries are mildly poisonous when consumed raw, causing vomiting, but Elderberry Juice used as a coloring material is non-toxic and does not cause any adverse effects.

As noted above, preparations of Elderberry Juice have very high concentrations of anthocyanin compounds. These naturally occurring antioxidants have been shown to be effective free radical scavengers in the body. The intake of natural antioxidants promotes general good health, and some evidence suggests that they reduce the risks of cancer, the neurodegenerative effects of aging, and the risks of developing cardiac diseases.

(e) Effects on soil organisms, crops, or livestock.

There is no evidence of any effect from Elderberry Juice on soil organisms, crops, or livestock from the production of Elderberry Juice.

10. Safety information about the substance including a Material Safety Data Sheet (MSDS) and a substance report from the National Institute of Environmental Health Studies

A Material Safety Data Sheet for Elderberry Juice is available and is included as Attachment #4. No substance report for Elderberry Juice from the National Institute of Environmental Health Studies was found.

11. Research information about the substance which includes comprehensive substance research reviews and research bibliographies, including reviews and bibliographies which present contrasting positions to those presented by the petitioner in supporting the substance's inclusion on or removal from the National List. For petitions to include non-organic agricultural substances onto the National List, this information item should be responded to with research concerning the availability of organic alternatives.

Safety Reviews:

References:
Elderberry Juice Petition

Additional information concerning the history, culinary use, and medicinal use of elderberries is found in Attachment #5.

Commercial Availability Research:

As justification for this petition to place Elderberry Juice for use as a food coloring substance on National List section §205.606, we have done considerable research into the commercial availability of organic forms of Elderberry Juice.

CBI Deleted—commercial availability information
12. Petition Justification Statement which provides justification for any of the following actions requested in the petition:

Natural colors have historically been an essential component of many food products. Practically all consumers judge the palatability of foods not only on flavor, texture, and aroma, but also on appearance. A large number of these consumers would find foods that did not meet their expectations for vibrant yet reliable colors to be unappealing and perhaps would suspect that they are not sufficiently nutritious or even, in some cases, safe to eat. Consumer acceptance of these foods is therefore based in large part upon the ability of processed food manufacturers to utilize food colors to maintain expected and desirable appearances for their products.

Organic consumers expect no less from their foods. Organic foods are chosen by consumers because they know that they are healthy and reliable, but also because they look good to consumers. For many foods, a large part of this positive appearance is due to the use of natural colors. Packaged organic black cherry yogurt looks like delicious yogurt with fresh black cherries swirled in because of the addition of elderberry juice. Organic portobello mushroom veggie hot dogs resemble a “traditional” hot dog due to the addition of paprika. Organic strawberry cheesecake looks like, well, strawberry cheesecake through the addition of beet juice. In all cases, the consumer is guaranteed that in addition to the great flavor and
health benefits of eating organic foods, they also have the expected appearance and a highly desirable palatability.

The use of natural colors in organic and traditional foods is critical due to the processes involved in food production. In many processes there is at least one and occasionally several heating steps involved in the conversion of raw ingredients to final food products. In other cases the blending of ingredients changes the pH or increases the rate of oxidation. These have a deleterious effect on the colors in the raw materials, turning a bright red strawberry into something else entirely—something that consumers of traditional and organic foods might find unpalatable. Supplementing or replacing the naturally-contained color in the raw materials of food products with small amounts of natural colors ensures that the finished food products maintain the appeal of natural, unprocessed foods.

While IACM supported the renewal of “Colors, non-synthetic sources only” to the National List section 205.605(a), we do recognize that there were procedural difficulties with its initial placement on the National List that warranted its removal for legal reasons. The members of IACM have substantial interest in the potential growth of the organic industry, and we see the value in developing certified organic processes for our coloring materials. Should this petition be approved, Elderberry Juice used as a coloring material will be supplied to our organic customers by our member companies only until such a time as processes for certified organic Elderberry Juice that can be used as a coloring material are commercially available. Until that time, our customer organic handlers will be able to incorporate a spectrum of vibrant natural colors into their products, and the consumers will continue to purchase organic food products that meet their desires for a healthy, colorful diet.
13. Commercial Confidential Information Statement:

CBI Deleted—commercial availability information

List of Attachments

Attachment #1: Technical Advisory Panel Review of “Colors, Non-Synthetic Sources Only”
Attachment #2: JECFA Evaluation of Anthocyanins
Attachment #3: Label(s) of Products containing Elderberry Juice
Attachment #4: Material Safety Data Sheet for Elderberry Juice
Attachment #5: Information concerning the history, culinary use, and medical use of elderberries
OVERVIEW OF FOOD COLOR ADDITIVES
Prepared for the USDA National Organic Program and
the National Organic Standards Board
October 14, 2005

This paper provides a general overview of color additives and how they are regulated in
the United States. Use of colors in organic food production and potential adverse effects
from the consumption of some specific colorants also are discussed.

I. EXECUTIVE SUMMARY

Colors are defined as any dye, pigment, or other substance that can impart color to a
food, drug, or cosmetic or to the human body. Colors are regulated in the United States
by the U.S. Food and Drug Administration (FDA) and are categorized either as
“certifiable” (those derived primarily from petroleum and known as coal-tar dyes) or
“exempt from certification” (those obtained largely from mineral, plant, or animal
sources). Currently, there are no GRAS (“generally recognized as safe”) exemptions for
color additives. Consequently, all color additives are subject to premarket approval
requirements. To obtain approval from FDA for a new color additive, the manufacturer
must submit a petition demonstrating the safety and suitability of the new color additive
or new use. FDA is then responsible for evaluating the petition and determining whether
the color additive is safe for human consumption. Additionally, the decision regarding
batch certification is made during FDA’s review of the petition. If required, a sample
from each manufactured batch must be submitted to FDA for analysis and certification.
With this regulatory process, color additives generally have a good safety record;
however, some adverse reactions have been noted. Specifically, allergic effects to
Yellow No. 5 and carmine and cochineal extract have been observed. Additionally,
possible carcinogenic effects have led FDA to ban uses of FD&C Red No. 3 and FD&C
Red No. 2.

II. CHARACTERIZATION

Color additives are defined as any dye, pigment, or other substance that can impart color
to a food, drug, or cosmetic or to the human body. Color additives include those that are
white, black, and gray (Barrows et al., 2003). They also may include any chemical that
reacts with another substance and causes formation of a color. In the United States, FDA
is responsible for regulating color additives. For regulation purposes, FDA categorizes
colors as “certifiable” (those derived primarily from petroleum and known as coal-tar
dyes) and “exempt from certification” (those obtained largely from mineral, plant, or
animal sources).

Certifiable colors can be further categorized into straight colors, mixtures, and dyes and
inks. Straight colors are those color additives that have not been mixed or chemically
reacted with any other substance. Mixtures are the resulting color additives that are
formed by mixing one color additive with one or more color additives or non-colored
diluents, without a chemical reaction. Dyes are defined as those that “...dissolve in water
and are manufactured as powders, granules, liquids or other special purpose forms. They can be used in beverages, dry mixes, baked goods, confections, dairy products, pet foods and a variety of other products” (FDA, 1993). Lakes are the water insoluble form of the dye. Lakes tend to be more stable than dyes and ideal for coloring products containing fats and oils or items lacking sufficient moisture to dissolve dyes. Some examples where lakes are used include: coated tablets, cake and donut mixes, hard candies, and chewing gums. Additionally, certifiable colors that are added to food are chemically classified as azo, xanthene, triphenylmethane, and indigoid dyes.

III. REGULATION

A. History

Color additives were initially regulated in the United States under the U.S. Department of Agriculture’s (USDA) Bureau of Chemistry. In 1906, the Food and Drugs Act was passed by Congress, which prohibited the use of poisonous or deleterious colors in confectionery and the coloring or staining of food to conceal damage or inferiority. In 1927, responsibility of the Food and Drugs Act was transferred to FDA. Increasing government oversight, the Federal Food, Drug, and Cosmetic Act (FFDCA) was passed in 1938 and established the three following categories for colors:

- **FD&C**: colors used in foods, drugs and cosmetics;
- **D&C**: colors used in drugs and cosmetics when in contact with mucous membranes or ingested; and
- **Ext. D&C**: colors used in products applied externally.

The FFDCA mandated a listing of those coal-tar colors that were determined to be "harmless and suitable" for use in foods, drugs, and cosmetics. FDA interpreted, "harmless" to mean harmless at any level (Francis, 2000). Additionally, the FFDCA required the listing of new colors, mandated the previously voluntary certification program for batches of listed color with associated fees, and contained adulteration and misbranding provision for the use of coal-tar colors in food, drugs, and cosmetics (Barrows et al., 2003).

The Color Additive Amendments to the FFDCA were established in 1960 because FDA’s interpretation of ‘harmless’ was not workable. Under the Color Additive Amendments, “color additives” were defined and a requirement was established that only color additives (except coal-tar hair dyes) listed as “suitable and safe” for a given use could be used in foods, drugs, cosmetics, and medical devices. A current listing of FDA approved colorants, including those that do and do not require certification, is provided in Table 1 (Barrows et al., 2003). As illustrated in Table 1, all of these colorants are straight colors.
<table>
<thead>
<tr>
<th>Color Additives Subject To Certification</th>
<th>Straight Color</th>
<th>Use and Restrictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>74.101</td>
<td>FD&C Blue No. 1</td>
<td>Foods generally</td>
</tr>
<tr>
<td>74.102</td>
<td>FD&C Blue No. 2</td>
<td>Foods generally</td>
</tr>
<tr>
<td>74.203</td>
<td>FD&C Green No. 3</td>
<td>Foods generally</td>
</tr>
<tr>
<td>74.250</td>
<td>Orange B</td>
<td>Casings or surfaces of frankfurters and sausages, NTE 150 ppm</td>
</tr>
<tr>
<td>74.302</td>
<td>Citrus Red No. 2</td>
<td>Skins of oranges not intended or used for processing, NTE 2.0 ppm (by weight)</td>
</tr>
<tr>
<td>74.303</td>
<td>FD&C Red No. 3</td>
<td>Foods generally</td>
</tr>
<tr>
<td>74.340</td>
<td>FD&C Red No. 40</td>
<td>Foods generally</td>
</tr>
<tr>
<td>74.705</td>
<td>FD&C Yellow No. 5</td>
<td>Foods generally</td>
</tr>
<tr>
<td>74.706</td>
<td>FD&C Yellow No. 6</td>
<td>Foods generally</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Color Additives Exempt From Certification</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>73.30</td>
<td>Annatto extract</td>
<td>Foods generally</td>
</tr>
<tr>
<td>73.35</td>
<td>Astaxanthin</td>
<td>Salmonid fish feed</td>
</tr>
<tr>
<td>73.40</td>
<td>Dehydrated beets (beet powder)</td>
<td>Foods generally</td>
</tr>
<tr>
<td>73.50</td>
<td>Ultramarine blue</td>
<td>Salt for animal feed</td>
</tr>
<tr>
<td>73.75</td>
<td>Canthaxanthin</td>
<td>Foods generally, NTE 30 mg/lb of solid or semisolid food or per pint of liquid food; broiler chicken feed; salmonid fish feed</td>
</tr>
<tr>
<td>73.85</td>
<td>Caramel</td>
<td>Foods generally</td>
</tr>
<tr>
<td>73.90</td>
<td>β-Apo-8-carotenal</td>
<td>Foods generally, NTE 15 mg/lb solid, 15 mg/p liquid</td>
</tr>
<tr>
<td>73.95</td>
<td>B-Carotene</td>
<td>Foods generally</td>
</tr>
<tr>
<td>73.100</td>
<td>Cordyceps extract, carmine</td>
<td>Foods generally</td>
</tr>
<tr>
<td>73.125</td>
<td>Sodium copper chlorophyllin</td>
<td>Citrus-based dry beverage mixes, NET 0.2%, dry mix</td>
</tr>
<tr>
<td>73.140</td>
<td>Toasted partially defatted cork cottonseed flour</td>
<td>Foods generally</td>
</tr>
<tr>
<td>73.160</td>
<td>Ferrous gluconate</td>
<td>Ripe olives</td>
</tr>
<tr>
<td>73.165</td>
<td>Ferrous lactate</td>
<td>Ripe olives</td>
</tr>
<tr>
<td>73.169</td>
<td>Grape color extract</td>
<td>Nonbeverage food</td>
</tr>
<tr>
<td>73.170</td>
<td>Grape skin extract (enocianina)</td>
<td>Still and carbonated drinks and ales; beverage bases; alcoholic beverages</td>
</tr>
<tr>
<td>73.185</td>
<td>Haematococcus algae meal</td>
<td>Salmonid fish feed</td>
</tr>
<tr>
<td>73.200</td>
<td>Synthetic iron oxide</td>
<td>Sausage casings, NTE 0.1%</td>
</tr>
<tr>
<td>21 CFR Section</td>
<td>Straight Color</td>
<td>Use and Restrictions</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>73.250</td>
<td>Fruit juice</td>
<td>Foods generally</td>
</tr>
<tr>
<td>73.260</td>
<td>Vegetable juice</td>
<td>Foods generally</td>
</tr>
<tr>
<td>73.275</td>
<td>Dried algal meal</td>
<td>Chicken feed</td>
</tr>
<tr>
<td>73.295</td>
<td>Tagetes (Aztec marigold means and extract)</td>
<td>Chicken feed</td>
</tr>
<tr>
<td>73.300</td>
<td>Carrot oil</td>
<td>Foods generally</td>
</tr>
<tr>
<td>73.315</td>
<td>Corn endosperm oil</td>
<td>Chicken feed</td>
</tr>
<tr>
<td>73.340</td>
<td>Paprika</td>
<td>Foods generally</td>
</tr>
<tr>
<td>73.345</td>
<td>Paprika oleoresin</td>
<td>Foods generally</td>
</tr>
<tr>
<td>73.351</td>
<td>Phaffia yeast</td>
<td>Salmon fish feed</td>
</tr>
<tr>
<td>73.450</td>
<td>Riboflavin</td>
<td>Foods generally</td>
</tr>
<tr>
<td>73.500</td>
<td>Saffron</td>
<td>Foods generally</td>
</tr>
<tr>
<td>73.575</td>
<td>Titanium dioxide</td>
<td>Foods generally, NTE 1% (by weight)</td>
</tr>
<tr>
<td>73.600</td>
<td>Turmeric</td>
<td>Foods generally</td>
</tr>
<tr>
<td>73.615</td>
<td>Turmeric oleoresin</td>
<td>Foods generally</td>
</tr>
</tbody>
</table>

The Color Additive Amendments also established the "Doleaney Clause" that prohibited the listing of a color additive shown to be carcinogenic.

B. Petition Process

Under the current regulatory system, FDA is responsible for ensuring the safety of new food additives, including colors. However, food additive petitions are not required for food additives that are identified as "generally recognized as safe" (GRAS) substance. Currently, there are no GRAS ("generally recognized as safe") exemptions for color additives. Consequently, all color additives are subject to premarket approval requirements. These requirements are listed in Title 21 of the Code of Federal Regulations (CFR), Part 71. In filing a color additive petition, the manufacturer is responsible for providing FDA with information including, but not limited to the following:

- Identification of the food additive;
- Physical, chemical, and biological properties;
- Chemical specifications;
- Manufacturing process description;
- Stability data;
- Intended uses and restrictions;
- Labeling1;

1 Any labeling that will be required by applicable provisions of the FFDCA on the finished food by reason of the use of the food additive.
Tolerances and limitations;

Analytical methods for enforcing chemical specifications;

Safety studies; and

Estimate of probable exposure.

C. Safety Assessment

A color additive petition must demonstrate the safety and suitability of the new color additive or new use. FDA is responsible for evaluating petitions and determining whether the additive is safe for human consumption. Generally, this determination is made by examining the following parameters:

- History of use or natural occurrence;
- Consumption ratio, if applicable;
- Exposure levels;
- Inherent toxicity of the substance;
- Toxicological data on the substance or on structurally-related compounds; and
- Metabolism of the substance (either know of forecasted on the basis of data for structurally-related compounds).

FDA’s safety assessment includes a review toxicity data such as the results of controlled animal studies. Ideally, a complete range of data, including short- and long-term toxicity studies, as well as studies that examine possible reproductive, carcinogenic, mutagenic, and sensitization characteristics of the color additive would be available for review. Sometimes a complete set of toxicology data is not available. One method of gaining additional insight on a color lacking a complete set of data is to evaluate the toxicity of structurally related substances. By evaluating structurally related substances, scientists can try to determine how the compound is absorbed, distributed, and metabolized within the body, and how it may act on target organs in the body. Based on these data and various safety factors, FDA determines a safe exposure level for the color additive.

FDA then compares the safe exposure level to the amount likely to be consumed in food taking into consideration the composition and properties of the substance and the proposed conditions of use. Because the absolute safety of any substance can never be proven, FDA must determine if the additive is safe under the proposed conditions of use, based on the best scientific knowledge available. For more information, see http://vm.cfsan.fda.gov/~dms/copasglsic.html.

1 According to 21 CFR Part 571, “If the food additive is one for which a tolerance limitation is required to assure its safety, the level of overuse proposed should be no higher than the amount reasonably required to accomplish the intended physical or other technical effect, even though the safety data may support a higher tolerance.”
D. Batch Certification

As described in Section II, FDA requires certification of every manufactured batch of some color additives. Color additives requiring and exempt from batch certification are listed in Table 1.

Batch certification is required when the composition of the color needs to be controlled in order to protect public health. Procedures for color additive batch certification are available in 21 CFR Part 80. Under these procedures, a sample from each manufactured batch of certifiable color additive, as well as a “Request for Certification,” must be submitted to FDA’s Color Certification Branch. The “Request for Certification” should provide information regarding the batch weight, storage conditions, and the use for which it is being certified. FDA is then responsible for evaluating the batch’s physical appearance and performing chemical analyses including, but not limited to the following:

- Purity (total color content);
- Moisture;
- Residual salts;
- Unreacted intermediates;
- Colored impurities other than the main color;
- Any other specified impurities; and
- Heavy metals (lead, arsenic, and mercury).

If the sample meets FDA’s requirements, FDA will issue a certificate for the batch that identifies the color additive, batch weight, uses for which the color additive is certified, the name and address of the owner, as well as other information. The batch also is assigned a unique lot number.

Colors that are exempt from certification not usually derived from plant or mineral sources and must comply with the identity and purity specification and use limitation described in their listing regulations. According to 21 CFR 71.1(c)(2), "If exemption from batch certification is requested, the reasons why it is believed such certification is not necessary (including supporting data to establish the safety of the intended use)."

Consequently, a petition for exemption from certification must show why such certification is not necessary for the protection of public health (21 CFR 71.18). Color additives that are exempt from batch certification for one use may be subject to batch certification for other uses. Because natural colorants are exempt from a lengthy certification process, there has been a strong trend over the past 30 years toward the use of these color additives as compared to synthetic coal-tar dyes (Francis, 2000).

IV. ADVERSE EFFECTS

Although food colors generally have a good safety record, some adverse reactions have been noted. For example, Yellow No. 5 (listed as tartrazine on medicine labels; a color found widely in beverages, desserts, processed vegetables, drugs, makeup, and many other products) causes itching or hives in a small population sub-group (FDA, 2001).
Another color that causes allergic reactions is carmine and cochineal extract. Carmine and cochineal extract are scarlet red pigments that come from the female cochineal insect Dactylotopus coccus var. Costa (family Dactylopiidae, superfamily Cocoidinae), which is parasitic on several species of cacti, particularly the cochineal figs produced by prickly pear (Opuntia) cactus Nopalea chihualifera. There have been several case reports of anaphylaxis and urticaria resulting from ingestion of food or drink containing carmine (Beaudouin et al., 1995; Baldwin et al., 1997; DiCello et al., 1999a-b; Chung et al., 2001).

In 1960, FDA banned uses of FD&C Red No. 3 including cosmetics and externally applied drugs because large amounts of the color caused thyroid tumors in male rats (FDA, 2001). In 1976, FDA issued a ban on FD&C Red No. 2 because there appeared to be a statistically significant increase in malignant tumors when fed high doses of the color (FDA, 2001).

V. USE OF COLORS IN ORGANIC FOODS

Colors are currently on the National List of Allowed and Prohibited Substances for use in organic foods. Colors were not added to the National List as the result of a petition. Instead, they were included among substances initially placed on the National List when USDA promulgated regulations pursuant to the Organic Food Production Act of 1990. According to 21 CFR Part 205.605, nonagricultural (nonorganic) colors are allowed as ingredients in or on processed food products labeled as “organic” or “made with organic.” Only nonsynthetic colors (as a group) are allowed.

References:

ANTHOCYANINS

Explanation

These compounds have not previously been reviewed by the Joint FAO/WHO Expert Committee on Food Additives.

Introduction

Anthocyanins represent a large group of water-soluble plant pigments of the 2-phenylbenzophyrylium (flavylium) structure (Kuhnau, 1976). The class, "Anthocyanins", consists of some 200 or more compounds (Parkinson & Brown, 1981) chemically combined to a sugar moiety (glucose < rhamnose < galactose < xylose < arabinose) of which the most common are:

![Anthocyanin structure]

<table>
<thead>
<tr>
<th>Compound</th>
<th>Carbon ring B substitution</th>
</tr>
</thead>
<tbody>
<tr>
<td>pelargonidin</td>
<td>-H</td>
</tr>
<tr>
<td>cyanidin</td>
<td>-OH</td>
</tr>
<tr>
<td>delphinidin</td>
<td>-OH</td>
</tr>
<tr>
<td>peonidin</td>
<td>-OCH<sub>3</sub></td>
</tr>
<tr>
<td>petunidin</td>
<td>-OCH<sub>3</sub></td>
</tr>
<tr>
<td>malvidin</td>
<td>-OCH<sub>3</sub></td>
</tr>
</tbody>
</table>

The blue to red colour imparted by the anthocyanins depends largely upon the pH of the medium (Francis, 1977). The anthocyanins normally exist as glycosides; the aglycone component alone is extremely unstable.

The anthocyanin pigments present in grape-skin extract consist of diglucosides, monoglucosides, acylated monoglucosides, and acylated diglucosides of peonidin, malvidin, cyanidin, petunidin and delphinidin. The amount of each compound varies depending upon the variety of grape and climatic conditions.

BIOLOGICAL DATA

BIOCHEMICAL ASPECTS

Absorption, distribution and excretion

Anthocyanins are poorly absorbed from the gastrointestinal tract. Anthocyanins (notably delphinidin) extracted from concord grapes were administered to rats by either gavage (100 mg) or by percutaneous injection (50 mg) and the urine tested for unchanged anthocyanins by an HCl-acid red test (Horwitt, 1933). Anthocyanin was detected in the urine of rats administered anthocyanin by the percutaneous route but not by gavage. In studies in dogs (Horwitt, 1933) administered anthocyanin (500 mg) by gastric fistula, no
urinary coloration was demonstrated. However, in the rabbit, 1-2% of an oral dose of anthocyanin (500 mg) was present in the urine as the unchanged pigment. It should be noted that the HCl-acid red test used in this study would only detect unchanged anthocyanins (Scheline, 1978). If the anthocyanins were transformed into colourless pseudobases or pale anhydrolases prior to absorption and excretion, they would not be detected (Kuhnau, 1976).

The absence of pigmented urine in normal individuals ingesting anthocyanin-containing foods in humans coupled with the apparent lack of metabolism of anthocyanins has been interpreted as showing that gastrointestinal absorption of these compounds does not occur (Clark & Mackay, 1950). Clinical studies have reported anthocyaninuria in patients with a beet allergy, following the ingestion of large amounts of beets (Zindler & Colovos, 1950). However, this has been identified as betaninuria, and is related to the excretion of betanin, rather than anthocyanins (Porrai et al, 1968).

Tissue disposition of anthocyanosides derived from Vaccinium myrtillus (approximately 25% anthocyanins) was examined in Charles River rats following intraperitoneal (i.p.) or intravenous (i.v.) injection. Following acute administration by either route, anthocyanins were found to distribute rapidly into the tissues. Accumulation was primarily in the kidney, skin, liver, heart and lung (Lietti & Forni, 1976). There was also some indication of lymph node uptake of the anthocyanins. Elimination of the compound occurred primarily via the kidney (25-29%/24 hours) and bile (15-18%/24 hours). Because of the high urinary excretion rate in these studies, the anthocyanins are considered to be eliminated by both glomerular filtration and renal tubular excretion (Lietti & Forni, 1976).

Metabolism

Studies in rats have shown that some anthocyanins (notably pelargonidin, delphinidin, malvidin) were subject to degradation by intestinal bacteria (Griffiths & Smith, 1972a, b). p-hydroxyphenyl-lactic acid was detected in the urine of rats following the oral administration of pelargonidin (a 3',3-diglycoside of pelargonidin). Decoloration of "anthocyanin" by rat caecal cell extracts has been reported (Haveland-Smith, 1981). Anthocyanin extracts incubated with human faecal suspensions for 2-3 days remained unchanged (as measured by a reduction in suspension colour).

The presence of 2 unidentified metabolites in the urine of rats after gavage with 100 mg of delphinidin has also been reported (Scheline, 1978). Rats gavaged with malvidin (a 3',5'-diglycoside of malvidin) had 3 unidentified metabolites present in the urine. These studies suggest that some of the metabolites of anthocyanins (aglycones) can be absorbed. Metabolism of anthocyanins may occur to a limited degree by ring fission and/or glycoside hydrolysis of the anthocyanins (Parkinson & Brown, 1981). Cyanidin, the most widespread anthocyanin, has not been shown to be attacked by intestinal bacteria (Scheline, 1968; Griffiths & Smith, 1972a).

Effects on enzymes and other biochemical parameters

Both pelargonidin and delphinidin have been shown to inhibit aldoreductase in the lens of rats (Varma & Kinoshita, 1976). In other studies, anthocyanin-3-monoglycosides (namely petunidin-, delphinidin- and malvidin-) extracted from grapes were found to increase the activity of alpha glucan phosphorylase and glutamic acid dicarboxylase but inhibit glycerol dehydrogenase, malate dehydrogenase and hexokinase (Carpenter et al., 1967).
Other studies have shown that anthocyanins are capable of chelating ions such as copper (Somaatmadja et al., 1964) and iodide (Moudgal et al., 1958). The iodide ion was observed in vitro to form a stable complex with the anthocyanins (Moudgal et al., 1958).

TOXICOLOGICAL STUDIES

Special studies on mutagenicity

Cyanidin chloride was not mutagenic when examined in the Ames assay using Salmonella typhimurium strain TA-98 with and without metabolic activation (arochlor 1254 induced rat liver S-9 fraction) (MacGregor & Jurd, 1978). Structure-activity testing of a large group of flavonols for mutagenic response in this assay system indicated that compounds of flavylium class were inactive.

Cyanidin and delphinidin were inactive in the Ames assay system using 5 different strains of Salmonella typhimurium (TA-1535, TA-100, TA-1537, TA-1538 and TA-98) with and without activation (Brown & Dietrich, 1979).

Anthocyanin was tested in both the Ames test using Salmonella typhimurium TA-1538 for mutagenicity and in another in vitro test employing E. coli Wf2 for induction of DNA damage. In both assay procedures with or without metabolic activation (using either rat caecal extracts or rat liver microsomes) anthocyanins were not found to induce any response (Haveland-Smith, 1981). Negative findings were also reported for the anthocyanins in a gene conversion assay using S. cerevisiae D4 (Haveland-Smith, 1981).

Special studies on pharmacology

In rabbits administered anthocyanin glycosides 6 g/kg (oral) or 500 mg/kg (i.p.) acutely, no adverse effect was noted on blood pressure. However, 100-200 mg/kg i.v. was shown to elicit a transient hypotension accompanied by a decrease in respiratory amplitude. At 25 mg/kg i.v., diuretic effects were also reported. Anthocyanin also caused a vasodilation in the isolated rabbit heart (Pourrat et al., 1967).

In mice, anthocyanins given in oral doses of 500 mg/kg produced a sedative effect on the animals (Pourrat et al., 1967).

Improvements in visual acuity and darkness adaptation have been reported in humans for a short period of time, after receiving oral doses of up to 700 mg of the anthocyanins (Pourrat et al., 1967).

Special studies on reproduction

A 2-generation reproduction study was performed in rats (Sprague-Dawley) ingesting a grape-skin extract preparation that was prepared by spray drying the liquid form of the extract after addition of a carrier material (malto-dextrin). The preparation contained approximately 3% anthocyanins. The test group received dietary levels of 7.5% or 15% of the grape-skin extract throughout the study. There were two concurrent control groups, one receiving the basal diet, the other receiving a diet containing 9% of the malto-dextrin used as a carrier to the grape-skin extract preparation. The F2a generation (10/litter culled at 4 days) were maintained for 21 days post-partum, then autopsied. No differences in reproduction performance or indices including pup viability were apparent between control and dosed groups. At the high-dose level, both the F1a and F2a rats exhibited lower body weights than the concurrent controls. Body weights of the F2 pups in the 7.5% group were marginally depressed. However, it should be noted that the
decrease in body weights was accompanied by a concomitant decrease in food intake. At week 6 and at termination of the studies, haematological and blood serum chemistry and urinalyses were carried out in the F1a group. There were no compound-related effects. At week 18 of the study, rats in the F1a group were sacrificed and absolute and relative organ weights determined, and a complete histological study was carried out in the principal organs and tissues. Decrease in organ weights of the liver, adrenal and thyroid occurred in the 15% group. There were no compound-related histological effects (Cox & Babish, 1978a).

Special studies on teratogenicity

The anthocyanin glycosides (an extract from currants, blueberries and elderberries) were reported not to be teratogenic in rats, mice or rabbits when given at dose levels of 1.5, 3 or 9 g/kg over 3 successive generations (Pourrat et al., 1967).

Acute toxicity

<table>
<thead>
<tr>
<th>Animal</th>
<th>Route</th>
<th>LD50 (mg/kg bw)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mice</td>
<td>i.p.</td>
<td>4 110</td>
<td>Pourrat et al., 1967</td>
</tr>
<tr>
<td></td>
<td>i.v.</td>
<td>840</td>
<td>Pourrat et al., 1967</td>
</tr>
<tr>
<td></td>
<td>Oral</td>
<td>25 000</td>
<td>Pourrat et al., 1967</td>
</tr>
<tr>
<td>Rats</td>
<td>i.p.</td>
<td>2 850</td>
<td>Pourrat et al., 1967</td>
</tr>
<tr>
<td></td>
<td>i.v.</td>
<td>240</td>
<td>Pourrat et al., 1967</td>
</tr>
<tr>
<td></td>
<td>Oral</td>
<td>20 000</td>
<td>Pourrat et al., 1967</td>
</tr>
</tbody>
</table>

Test animals were administered the anthocyanins (cyanidin, petunidin and delphinidin mixture extracted from currants, blueberries and elderberries) in doses from 0 to 25 000 mg/kg bw for mice and from 0 to 20 000 mg/kg for rats. Following i.v. or i.p. administration, toxic doses of anthocyanins produced sedation, convulsions and finally death.

Short-term studies

Weanling male and female Wistar rats (20/group) were fed a diet containing anthocyanin extract at levels equivalent to 3000 mg/day or 6000 mg/day for a period of 90 days. A group of concurrent controls were also used in the study. The doses of anthocyanin administered were estimated to be 5 and 10 times, respectively, the level that a human would ingest. No differences were observed between the test animals and controls in survival, growth or histopathology of the principal tissues at the termination of the study (Pourrat et al., 1967).

In another study, guinea-pigs received 3000 mg/kg of anthocyanin in the diet for 15 days. No adverse effects were reported (Pourrat et al., 1967).

Male and female beagle dogs (4/sex/dose) received either 0, 7.5% or 15% of grape-skin extract (approximately 2.39% anthocyanin by weight) in the diet for 90 days. No differences were noted between control and treated animals in body weights, growth, survival, clinical chemistries (haematology, biochemistry or urinalysis), organ weights or pathological lesions (gross or microscopic) (Cox & Babish, 1978a).

OBSERVATIONS IN MAN

Man is naturally exposed to anthocyanins through the ingestion
of fruits and vegetables. Levels of exposure under normal dietary conditions have not been established.

Information on the metabolism and toxicity of the anthocyanins is limited. Its interpretation is complicated because the anthocyanins represent a large group of chemically-related substances and the effect observed with one defined anthocyanin may not be applicable to another. The available information suggests that anthocyanins are poorly absorbed from the gastrointestinal tract. Metabolism is limited and may be due to the activity of the intestinal bacterial flora. The metabolites of anthocyanins have not been identified. However, the insensitivity of the assay techniques used for measuring unmetabolized anthocyanins may result in a significant underestimate of the degree of absorption and metabolism of the anthocyanins (Kuhnau, 1976).

Comments

Toxicological studies are limited, and have been carried out with mixtures extracted from a variety of fruits. The available data indicate that such extracts are of a very low order of toxicity. Diets containing 7.5% or 15% of a grape-skin extract preparation (approximately 3% anthocyanin) had no effect on the reproductive performance of rats in a 2-generation reproductive study. The lower body weights of offspring were related to a concomitant decrease in food intake. At the highest level tested, there was a decreased organ weight of the liver, adrenal and thyroid. There were no compound-related histological effects. No compound-related effects were observed in a short-term study in which dogs were fed diets containing 7.5% or 15% of the grape-skin extract preparation.

EVALUATION

Level causing no toxicological effect (Grape-skin extract preparation)

Rat (young): 7.5% of the diet equivalent to 7500 mg/kg bw.

Estimate of acceptable daily intake for man

0-2.5 mg/kg bw.*

* Anthocyanins (present in the grape-skin preparation at level of approximately 3%).

REFERENCES

VI. Chelation studies on anthocyanins and other related compounds, *J. Food Sci.*, 29, 655-660

See Also:

Toxicological Abbreviations
ANTHOCYANINS (JECFA Evaluation)
Stonyfield Farm Fat Free 6 oz. Black Cherry

Fat Free 6 oz. Black Cherry

<table>
<thead>
<tr>
<th>Serving Size</th>
<th>1 Container</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount Per Serving</td>
<td>Calories 130 Calories from Fat 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>% Daily Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Fat</td>
<td>0g</td>
</tr>
<tr>
<td>Sat Fat</td>
<td>0g</td>
</tr>
<tr>
<td>Trans Fat</td>
<td>0g</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>0mg</td>
</tr>
<tr>
<td>Sodium</td>
<td>105mg</td>
</tr>
<tr>
<td>Potassium</td>
<td>350mg</td>
</tr>
<tr>
<td>Total Carbohydrate</td>
<td>26g</td>
</tr>
<tr>
<td>Dietary Fiber</td>
<td>2g</td>
</tr>
<tr>
<td>Sugars</td>
<td>23g</td>
</tr>
<tr>
<td>Protein</td>
<td>6g</td>
</tr>
<tr>
<td>Vitamin A</td>
<td>0%</td>
</tr>
<tr>
<td>Calcium</td>
<td>30%</td>
</tr>
<tr>
<td>Thiamin</td>
<td>6%</td>
</tr>
<tr>
<td>Vitamin B6</td>
<td>4%</td>
</tr>
<tr>
<td>Pantothenic Acid</td>
<td>6%</td>
</tr>
<tr>
<td>Magnesium</td>
<td>4%</td>
</tr>
</tbody>
</table>

*Percent Daily Values are based on a 2,000 calorie diet.

**OUR FAMILY RECIPE: CULTURED PASTEURIZED NONFAT MILK, SWEET BLACK CHERRIES, NATURALLY MILLED SUGAR, INULIN, PECTIN, NATURAL FLAVORS, ELDERBERRY JUICE CONCENTRATE (FOR COLOR). CONTAINS: SIX LIVE ACTIVE CULTURES INCLUDING: L. ACIDOPHILUS, BIFIDUS, L. CASEI, AND L. REUTERI.*

[close window]
Strawberry (6oz)

Nutritional Facts
Serving Size 1 Container

Amount Per Serving
Calories 150
Fat Cal. 25
% Daily Value *
Total Fat 2.5g 4%
 Saturated Fat 1.5g 8%
 Trans Fat 0g
Cholesterol 15mg 5%
Sodium 75mg 3%
Total Carb. 26g 9%
 Fiber 0g 0%
 Sugars 21g
Protein 7g
 Vitamin A 2% · Vitamin C 10%
 Calcium 25% · Iron 8%

* Percent Daily Values (DV) are based on a 2,000 calorie diet.

All Natural Ingredients:
Organic Cultured Pasteurized Reduced Fat Milk, Organic Strawberries, Organic Evaporated Cane Juice, Locust Bean Gum, Pectin, Natural Flavor, Elderberry Juice Concentrate For Color

Live Active Cultures:
L.acidophilus, L.bulgaricus, S.thermophilus, bifidus

UPC Code: 7 95079 01001 5

Calories 100 250
Calories from fat
Total Fat 0g 0% 0g 0%
Sodium 25mg 1% 65mg 3%
Total Carb 26g 9% 65g 23%
Sugars 25g 63g
Protein 0g 0g
Vitamin C 100% 250%
Calcium 4% 10%
Chromium 30% 75%

Not a significant source of saturated fat, trans fat, cholesterol, dietary fiber, vitamin A, calcium and iron.

* Percent daily values are based on a 2,000 calorie diet.

Herbal Content per bottle (20oz)
CARNITINE 100 mg

Ingredients
FILTERED WATER, HIGH FRUCTOSE CORN SYRUP, APPLE JUICE CONCENTRATE, CITRIC ACID, ORANGE JUICE CONCENTRATE, NATURAL FLAVOR, CALCIUM LACTATE, PECTIN, CRANBERRY JUICE CONCENTRATE, GRAPE JUICE CONCENTRATE (COLOR), ASCORBIC ACID (VITAMIN C), TARTARIC ACID, COCHINEAL EXTRACT (COLOR), L-CARNITINE, CHERRY JUICE CONCENTRATE, RED RASPBERRY JUICE CONCENTRATE, ELDERBERRY JUICE (COLOR), CHROMIUM PICOLINATE, POMEGRANATE JUICE CONCENTRATE, CARAMEL COLOR.

Caffeine content: 0mg per 8 fl oz; Caffeine content: 0mg per 20 fl oz

Other Caffeine-Containing Foods and Beverages
Material Safety Data Sheet

COMMERCIAL NAME: Elderberry Juice Concentrate 65 Brix
(Produced by Dinter)

NATURAL: yes

APPEARANCE: clear, bluish purple color

SPECIFIC GRAVITY: 1.31-1.33

PRESERVATIVES: None

MELTING POINT: n/a

COLORANTS: None

BOILING POINT: n/a

ADDITIVES: None

FLASHPOINT: n/a

EXTINGUISHING MEDIA: n/a

SPILL OR LEAK PROCEDURES: wash with water
The Encyclopedia of Herbs, Spices & Flavorings: A Cook's Compendium

Elisabeth Lambert Ortiz
TARRAGON

Tarragon, with its subtle and sophisticated flavor, is an essential herb in French cuisine. Native to Siberia, it became a common culinary herb throughout Europe by the fifteenth century. The Latin name, meaning "little dragon," derives from the medieval belief that it was an antidote for the bites of venomous animals. Wine vinegar perfumed with tarragon is a classic, while the reverse—tarragon leaves preserved in vinegar—is a delicious and practical use for abundant plants. Fresh or preserved leaves can be mixed with cream cheese, or pureed with cream and used for canapés. There are two closely related forms of this valuable culinary herb: French, or "true" tarragon, and Russian tarragon. Because of its delicate anise-like flavor, French tarragon is the preferable type, although it is harder to cultivate because it seldom sets viable seed. Russian tarragon grows easily from seed but has a slightly bitter, more pungent flavor.

FINES HERBES

This is a traditional French blend of four subtle herbs: parsley, chervil, chives, and tarragon. Finely chopped and used fresh, it brings an aromatic bouquet to simple green salads, and the delicate flavors marry well with egg dishes—especially omelets—and poached chicken and fish. Heat diminishes the taste, so it is best to add this seasoning at the end of the cooking time or sprinkle on for a delicious garnish.

Fresh fines herbes
With a sharp knife, chop equal amounts of each of the four herbs and combine.

Tarragon

Beverage Vinegar
White-wine vinegar flavored with tarragon is a useful and flavorful condiment. Use in salad dressings, or to deglaze skillets (see page 249). Place a large sprig in a sterilized bottle or glass jar, bring the vinegar to a boil, and pour in enough to cover. Seal and store away from light.

Tastes Good With/In
Many classic French sauces, such as béarnaise or tartare, with œufs en gelée (eggs in aspic), omelets, poached fish, mushrooms, poultry, especially chicken, mustard sauces, and salad dressings.

Cooking Tips
Tarragon has a flavor that, although subtle, diffuses quickly through dishes, so it must be used sparingly. Tarragon butter is simple to make and can be stored in the freezer. For each 2 tbsp softened butter, add 1 tsp finely chopped tarragon, 1 tsp fresh lemon juice, and salt to taste.

Dried fines herbes
Mix together equal quantities of parsley, chives, tarragon, and chervil.

24
THE ENCYCLOPEDIA OF MEDICINAL PLANTS
A PRACTICAL REFERENCE GUIDE TO MORE THAN 550 KEY MEDICINAL PLANTS & THEIR USES

ANDREW CHEVALLIER
Sambucus nigra (Caprifoliaceae)

ELDER

ELDER HAS MORE FOLKLORE attached to it than almost any other European plant, except perhaps mandrake (*Mandragora officinarum*, p. 230). Chopping elder branches was considered dangerous in rural England because it was believed that the tree was inhabited by the Elder Mother. To avoid her wrath, woodcutters would recite a placatory rhyme. Elder is a valuable remedy for flu, colds, and chesty conditions.

HABITAT & CULTIVATION

Native to Europe, elder thrives in woods, hedges, and on wasteland. It is now found in most temperate regions and is often cultivated. Elder is propagated from cuttings in spring. The flowering tops are harvested in late spring and the berries are picked in early autumn.

KEY CONSTITUENTS

Flowers:
- Flavonoids (up to 3%) – rutin
- Phenolic acids
- Triterpenes
- Sterols
- Volatile oil (up to 0.2%)
- Mucilage
- Tannins

Leaves:
- Cyanogenic glycosides

Berries:
- Flavonoids
- Anthocyanins
- Vitamins A and C

KEY ACTIONS
- Increases sweating
- Diuretic
- Anti-inflammatory

RESEARCH

Lack of research Research indicates that the flowers reduce inflammation, but on the whole elder is a poorly researched herb. Its diaphoretic effect (increasing sweating) is well known but even this is not completely understood.

TRADITIONAL & CURRENT USES

Coughs & colds Flowering tops are ideal for coughs, colds, and flu. The infusion is relaxing and produces a mild perspiration that helps to reduce fever.

Congestion & allergies The flowering tops tone the mucous linings of the nose and throat, increasing their resistance to infection. They are prescribed for chronic congestion, allergies, ear infections, and candidiasis. Infusions of the flowering tops and other herbs can reduce the severity of hay fever attacks if taken for some months before the onset of the hay fever season.

Arthritis By encouraging sweating and urine production, elder flowering tops promote the removal of waste products from the body and are of value in arthritic conditions.

Berries Rich in vitamin C, elder berries have been taken for rheumatism and erysipelas (a skin infection). They are mildly laxative and also help diarrhea.

SELF-HELP USES

- Allergic rhinitis, including hay fever, p. 300.
- Candidiasis, p. 314.
- Earache due to chronic congestion, p. 312.
- Flu, p. 311.

KEY PREPARATIONS & THEIR USES

Infusion of flowering tops (to make, p. 290). For colds, drink 1 cup 3 times a day.

Decoction of berries (to make, p. 290). For rheumatic aches, take 100 ml 3 times a day.

Tincture of flowering tops (to make, p. 291). For hay fever, take 1 tsp with water 3–4 times a day.