Anaerobic Digestate

	of Peti	tioned Substance
Chemical Names: Anaerobic digestate Other Names: Acidogenic digestate; Methanogenic digestate; Anaerobic compost; Anaerobic digestate – Food waste; Food waste anaerobic digestate; Anaerobically digested manure; Biogas Biofertiliser; Biogas Digestate; Sludge.	14 15 16 17	Trade Names: Accomplish-LM; Energro; Magic Dirt Organic Garden Soil; Magic Dirt Organic Premium Potting Mix; Milorganite. CAS Numbers: None Other Codes: None
Summary	of Pet	itioned Use
 report will address specific focus areas requested Define anaerobic digestion (AD) and its e Describe commercially available AD tech 	end pro	-
 products. (see Evaluation Question 2) Discuss differences between anaerobic di Provide a summary of all the methods in 		e products and compost. (see Evaluation Question 11)
end products. The TR should also describ typically added during the anaerobic dig they are used up, removed, or contribute	e any i estion j	materials (e.g., acids, bases, microorganisms, etc.)
 end products. The TR should also describ typically added during the anaerobic dige they are used up, removed, or contribute <i>Question 2</i>) Explain a typical nutrient cycle for the fee nitrogen. (<i>see Action of the Substance</i>) 	e any r estion j to the edstock	materials (e.g., acids, bases, microorganisms, etc.) process, and discuss the fate of these additives (e.g., nutrient profile for the end product). (<i>see Evaluation</i> as into end products from these processes, focusing c
 end products. The TR should also describ typically added during the anaerobic dige they are used up, removed, or contribute <i>Question 2</i>) Explain a typical nutrient cycle for the fee nitrogen. (<i>see Action of the Substance</i>) Describe available data concerning patho and describe documented microbiologica 	e any r estion j to the edstock gen (e. l risks ge is ou	materials (e.g., acids, bases, microorganisms, etc.) process, and discuss the fate of these additives (e.g., nutrient profile for the end product). (<i>see Evaluation</i> as into end products from these processes, focusing of g., E. coli, Salmonella) control using anaerobic diges from use of AD products. (<i>see Evaluation Question 10</i> , tside the scope of this report, because sewage sludge
 end products. The TR should also describtive typically added during the anaerobic digetive are used up, removed, or contribute <i>Question 2</i>) Explain a typical nutrient cycle for the feet nitrogen. (see Action of the Substance) Describe available data concerning patho and describe documented microbiological Anaerobic digestate produced from sewage sludge prohibited in organic production [7 CFR 205.105(gdigestion of food and agricultural feedstocks were this report will make references to processes and anaerobic digestate made from animal manure, for unavailable from sources within the scope of the preferred to as the liquor – is also beyond the scope 	e any t estion p to the edstock gen (e. l risks ge is ou g)]. Ho e origin results bod wa review e of thi ade to t	materials (e.g., acids, bases, microorganisms, etc.) process, and discuss the fate of these additives (e.g., nutrient profile for the end product). (<i>see Evaluation</i> as into end products from these processes, focusing of g., E. coli, Salmonella) control using anaerobic diges from use of AD products. (<i>see Evaluation Question 10</i> , tside the scope of this report, because sewage sludge wever, many of the processes used for the anaerobic nally developed for the handling of sewage sludge, <i>a</i> involving sewage sludge where specific information ste, crop residues, and other permitted feedstocks is . The liquid fraction of the anaerobic digestion proce s report, as is the methane gas generated as the prim the liquor for the purposes of describing the process,

Composition of the Substance: 53

54 Anaerobic digestate (AD) is the solid or semi-solid fraction of the effluent produced by anaerobic digestion

- of organic matter. AD is composed mostly of water and organic matter. The specific composition varies
- widely, depending on the feedstock, origin, pre-treatment and digestion processes. The various feedstocks, additives, and prevalent technologies used in the anaerobic digestion process are discussed in Evaluation
- 57 additives, and prevalent technologies used in the anaerobic digestion process are discussed in Evaluat 58 Question #2, and the biochemical reactions that take place are described in Evaluation Question #3.
- 59

60 Source or Origin of the Substance:

61 Anaerobic digestion is a microbiological process that decomposes organic matter in the absence of

- 62 atmospheric oxygen (O₂), which enables specific microorganisms known as 'methanogenic bacteria' to
- 63 convert organic matter to methane. These organisms are inhibited by the presence of O_2 . The anaerobic
- 64 digestion process produces three products: (1) biogas, (2) digestate, and (3) liquor. In most cases, the main
- 65 product is methane (CH₄) or natural gas contained in the biogas, which is vented to be stored or directly
- used for fuel. The solid or semi-solid fraction from the anaerobic digestion process is known as the
- 67 "digestate," and the liquid fraction is known as the "liquor." The biochemical reactions take place in 68 airtight vessels known as anaerobic digesters.
- 69
- 70 Most AD in the United States is the product of digestion in publicly owned waste treatment works and is
- 71 considered sewage sludge. Manure collected in pit lagoons in concentrated animal feeding operations
- 72 (CAFOs) is the second greatest source in the United States. Industrial effluent and various other privately
- owned and mixed sources account for the rest. In addition to food processing wastes, other industrial
- refluents treated by anaerobic digestion include pulp and paper mill black liquor evaporation condensate,
- 75 coal conversion condensate, and deionized industrial process waste waters (Speece 1983). Feedstocks,
- 76 fermentation organisms, and processes are further explained in Evaluation Question #2.
- 77
- 78 In contrast to anaerobic digestion, composting is a process wherein the bacteria that decompose organic matter
- require O₂ to carry out their metabolic activity. Composting is therefore an aerobic process, while digestion is an
- 80 anaerobic process. Some references refer to anaerobic digestate as 'anaerobic compost,' but this is regarded by
- 81 some to be a misnomer or oxymoron, because compost generally refers to the product of an aerobic
- 82 decomposition process. However, the two products are often visually indistinguishable. Compared with aerobic
- compost, anaerobic digestate will have a lower dry matter content, a narrower carbon-to-nitrogen (C:N) ratio,
- and more ammonium nitrogen (NH₄-N) (Walker, Charles, and Cord-Ruwisch 2009; Tambone et al. 2010; Möller
 2016). Other comparisons between AD and aerobic compost are made in Evaluation Question #11.
- 85 86

87 **Properties of the Substance:**

- 88 The physical and chemical properties of AD are summarized in Table 1. Most of the numeric values are
- 89 reported as ranges.
- 90
- 91

Property (Units)	Characteristic / Value	Source(s)
Physical state at 25°C / 1	Semi-solid to Solid	(Rowe and Abdel-Magid 1995)
Atm.		
Color	Light to Dark Brown	(Rowe and Abdel-Magid 1995)
Odor	Musty, sometimes with	(Rowe and Abdel-Magid 1995; Higgins e
	distinct ammonia and	al. 2006; Drennan and DiStefano 2014)
	hydrogen sulfide (rotten egg)	
	notes	
Dry Matter (%)	1.5 - 45.8	(Gutser et al. 2005; Nkoa 2014; Möller
		2016)
Organic Matter (%DM)	38.6 - 75.4	(Nkoa 2014)
C : N Ratio	2.0 - 24.8	(Nkoa 2014)
Total Nitrogen (%DM)	3.1 - 14.0	(Nkoa 2014)
Total Nitrogen (%FM)	0.12 – 1.5	(Nkoa 2014)
NH4 Nitrogen (% Total N)	35 - 81	(Nkoa 2014)
Total Phosphorous (%FM)	0.04 - 0.26	(Nkoa 2014)
Potassium (%FM)	0.12 - 1.15	(Nkoa 2014)
Calcium (%FM)	0.01 - 0.02	(Nkoa 2014)
Magnesium (%FM)	0.03 - 0.07	(Nkoa 2014)
Sulfur (%FM)	0.02 - 0.04	(Nkoa 2014)
Cadmium (ppm DM)	0.03 - 1.60	(Silvia Bonetta et al. 2014; Möller 2016)
Copper (ppm DM)	7.5 - 561.0	(Silvia Bonetta et al. 2014; Möller 2016)
Lead (ppm DM)	1.9 - 126.0	(Silvia Bonetta et al. 2014; Möller 2016)
CEC (meq/100g)	20.3 - 53.4	(Nkoa 2014)
pH	7.3 - 9.0	(Nkoa 2014)

92 Table 1: Physical and Chemical Properties of Anaerobic Digestate

CEC=Cation Exchange Capacity; DM=Dry Matter; FM=Fresh Matter; meq=milliequivalents; ppm=Parts Per Million
 94

95 The wide range in values for physical and chemical properties shows how variable the substance can be.

96 Anaerobic digestate is best characterized as friable, flocculated organic matter. When manure is used as a

97 feedstock, the resulting AD may be visually indistinguishable from agricultural compost. Other feedstocks

98 may yield a lighter colored and less opaque surface area (Marcilhac et al. 2014). When dried and cured, the

99 odor is musty and inoffensive. However, in many cases, fresh AD tends to be wet, malodorous, and high in

100 volatile fatty acid concentrations (Walker, Charles, and Cord-Ruwisch 2009).

101

102 In particular, fresh anaerobic material high in volatile organic sulfur compounds may produce a 'rotten

103 egg' smell characteristic of hydrogen sulfide gas, and AD high in volatile ammonia will have a distinct

- 104 ammonia smell. Hydrogen sulfide gas is generated by volatile organic sulfur compounds produced by the
- 105 decomposition and putrefaction of sulfur-bearing amino acids methionine, cysteine, and cystine under
- 106 anaerobic conditions. Blending feedstocks to reduce sulfur content, increasing the surface area of the

107 feedstock by equipment that will reduce particle size, and hydrogen sulfide removal prior to the

- 108 methanogenic step can all help reduce hydrogen sulfide in the AD (Higgins et al. 2006). Curing AD once
- 109 the process is complete also reduces nuisance odors (Drennan and DiStefano 2010).
- 110

111 Specific Uses of the Substance:

- 112 Anaerobic digestate is used as a fertilizer and soil amendment for horticultural products, agricultural crop
- 113 production, and landscape applications (Joblin 2016).
- 114

115 Approved Legal Uses of the Substance:

- 116 Anaerobic digestate from sewage sludge is subject to regulation by the United States Environmental
- 117 Protection Agency (EPA) [40 CFR 503]. Concentrated animal feeding operations (CAFOs) are regulated as
- point sources of pollution by the EPA [40 CFR 412]. Most, but not all states, are authorized to issue permits

May 15, 2017

- 119 to CAFOs. Exceptions are Idaho, Massachusetts, New Hampshire, New Mexico, the District of Columbia,
- 120 tribal lands, and United States territories, all of which fall under the EPA's jurisdiction (US EPA 2016a).
- 121 Anaerobic digesters on CAFOs are required to meet all federal, state and local regulations. These include 122 the Best Management Practices for the application of manure [40 CFR 412.4].
- 122 the Best Management Practices for the applicat

124 Action of the Substance:

- 125 When used as a fertilizer and soil conditioner, AD acts primarily a source of organic matter. The nitrogen,
- 126 phosphate and potash (NPK) values are relatively low, but may be comparable to compost. Value as a
- 127 fertilizer varies according to the quality of the finished product (Ward et al. 2008; Alburquerque et al. 2012; 128 Alfa et al. 2014; Nikoa 2014; Mäller 2016)
- 128 Alfa et al. 2014; Nkoa 2014; Möller 2016). 129
- 130 Nutrient Cycling
- 131

132 Most studies conducted on nutrient cycling and anaerobic digestion involve sewage sludge, mixed

- 133 municipal solid waste (MSW), or other feedstocks and ingredients which are prohibited for organic
- 134 production. Less information is available on anaerobic digestion of livestock manure and the nitrogen
- 135 cycle, but there are several key studies where the results are comparable to AD made with sewage sludge
- 136 and municipal solid waste feedstocks. Application of AD recycles nutrients in a way that is similar to the
- 137 application of raw manure and compost. However, a review of the literature indicates that the nitrogen in
- AD will have higher levels of ammonium (NH₄+-N) nitrogen (Mata-Alvarez, Macé, and Llabrés 2000;
- 139 Massé, Croteau, and Masse 2007; Sakar, Yetilmezsoy, and Kocak 2009; Nkoa 2014; Svoboda et al. 2015). It is
- believed that nitrogen is mineralized decomposed to ionic form and denitrified reduced from the
- 141 nitrate (NO_3) to ammonium (NH_4) by the anaerobic fermentation conditions (Akunna, Bizeau, and
- Moletta 1993). The partition of the ammonia into volatile losses to the atmosphere, solution with the liquid
- 143 effluent, and remainder that is precipitated in the solid or semi-solid portion of the AD appears to vary 144 according to feedstock, additives, and conditions such as pH, temperature and technology used. More
- 144 according to feedstock, additives, and conditions such as pH, temperature and technology used. More 145 research is needed to fully understand and compare different systems and conditions for manure
- 146 management with anaerobic digestion. A few results offer some suggestions.
- 147
- 148 One study (Möller et al. 2008) compared five treatments: solid farmyard manure; undigested liquid slurry;
- digested liquid slurry; digested liquid slurry and field residues (crop residues and cover crops); and
- digested liquid slurry and field residues (crop residues and cover crops), and fermentation substrates
- 151 composed of clover, grass and corn silage. The treatments were applied to soils used to grow spring wheat, 152 winter wheat rwa and spalt. All the treatments increased wields and putrient untake compared with the neg
- winter wheat, rye and spelt. All the treatments increased yields and nutrient uptake compared with the no treatment control. The yields were the highest with the digested slurry with crop residues and added
- 154 substrate. The other treatments were not significantly different from each other, but were significantly
- 155 higher than the no treatment control. Another study (Loria et al. 2007) compared AD from swine manure
- 155 Ingher than the no treatment control. Another study (Loria et al. 2007) compared AD from swine manure 156 with swine raw manure from the same source applied to corn fields in Iowa. The researchers concluded
- 150 with swite raw mature from the same source applied to corn fields in Iowa. The results that there was no difference in plant-available nitrogen from the two sources.
- 158
- The organic matter and carbon-to-nitrogen (C:N) ratio will be lower with AD than with dry manure or
- aerobic compost, partly because of the lower initial C:N ratio, and partly because of carbon loss via the
- 161 generation of methane. Some hypothesize that the lower C:N ratio, combined with the toxic effect of
- ammonium nitrogen may have a depressing effect on soil microorganisms, particularly those responsible
- 163 for fixing atmospheric nitrogen (N_2) . However, these hypothetical adverse effects have not been
- empirically shown, and if anything AD usually has a beneficial effect or at worst no adverse effects on
- soil biological activity (Abubaker 2012). In particular, some of the facultative anaerobic bacteria found in
- AD are free-living, nitrogen-fixing organisms (Alfa et al. 2014).
- 168 Anaerobic digestion does not reduce the phosphorous content when poultry litter is used as a feedstock
- 169 (Sakar, Yetilmezsoy, and Kocak 2009). Phosphorous content in anaerobically digested swine manure was
- also comparable to that of the raw manure (Loria and Sawyer 2005). Anaerobic digestion of swine manure
- 171 increased the nitrogen-to-phosphorous (N:P) ratio (Massé, Croteau, and Masse 2007).

- 173 Less is known about how the anaerobic digestion process changes potassium content and availability.
- 174 However, there is nothing to indicate that potassium losses are a factor. With swine manure, potassium
- 175 levels may even be slightly concentrated in the AD given the carbon losses from methane generation and a
- 176 little lost in solution in the liquid fraction of the effluent (Massé, Croteau, and Masse 2007).
- 177
- 178 Calcium, magnesium and the trace elements, specifically copper (Cu) and zinc (Zn), are mostly precipitated
- in the solid portion of the AD, but some may be removed in the liquid fraction of the effluent (Massé,
- 180 Croteau, and Masse 2007; Sakar, Yetilmezsoy, and Kocak 2009). While Cu and Zn are considered essential
- micronutrients for plants, some sources of AD may have high levels that can lead to accumulation and
 toxic excess. Contamination by Cu and Zn are discussed further in Evaluation Question #5.
- 183

Anaerobic digestion appears to change the sulfur cycle, as discussed above with the properties of the substance, as well as under Evaluation Question #2. Sulfur amino acid decomposition under reducing conditions – such as in the absence of oxygen – increases the production of hydrogen sulfide gas, which is usually vented with the biogas unless it is precipitated prior to release. More research would be needed to

- 188 investigate how the soil sulfur cycle is changed by anaerobic digestion technologies, and whether the 180 reduced forms of sulfur from AD have an impact on plant availability and soil microarganisms
- reduced forms of sulfur from AD have an impact on plant availability and soil microorganisms.

191 <u>Combinations of the Substance:</u>

192 Anaerobic digestate may be used as an ingredient in potting mix along with peat, coir, vermiculite and

- 193 perlite. Various fertilizers may also be combined with AD, such as soybean meal, soybean flour, cottonseed
- 194 meal, cottonseed flour, amino acids such as lysine, ammonium salts such as ammonium sulfate and
- ammonium nitrate, urea, potassium salts such as potassium sulfate, and micronutrients (Callendrello,
- Getman, and Nicholson 2015). Synthetic sources of these fertilizer ingredients are prohibited in organic
 production if they do not appear on the National List [7 CFR 205.105(a)].
- 198

Adsorbents and surfactants may also be added to remove the scum from the liquor, both during the

wastewater pretreatment process as well as after the gas is vented and the effluent is released. Some
 surfactants, such as sodium lauryl sulfate, polyethylene sorbatan fatty acids (Tween), and polydimethyl

suffactants, such as solution fauly i sufface, polyethylene solution fauly actus (1 week), and polyetherny siloxane polyethers (Tegoprens) may accelerate digestion and increase the methane yield (Madamwar,

203 Patel, and Patel 1991; Madamwar et al. 1992). Others, such as the alkyl sulfonates, appear to inhibit some of

- the organisms responsible for the digestion process and lower the methane yield (Hobson and Wheatley 1993).
- 205 206

207 Some commercial sources of AD will add nitrification inhibitors. Most of these are proprietary products,

- and the active substances are trade secrets. Some substances known to inhibit autotrophic NH_3 oxidation
- and proposed for commercial application include 1,1,1-trichloroethylene (TCE); 3-methylpyrazole-1-
- 210 carboxamide (MPC); 3,4-dimethylpyrazole phosphate (DMPP); and dicyandiamide (DCD) (G. McCarty
- 211 1999; Weiske et al. 2001).
- 212
- 213 Various additives manufactured using nanotechnology are being used on an experimental basis in
- 214 anaerobic digestion. These include metal oxides, zero-valent metals, and nano-ash and carbon-based
- 215 materials (Ganzoury and Allam 2015).
- 216

Status

219220 <u>Historic U</u>se:

221 There is archeological evidence that humans used biogas produced by anaerobic digestion in Asia as early 222 as the 10th Century BCE (He 2010; Bond and Templeton 2011). The first modern anaerobic digestion plant to produce biogas from organic waste was built in a leper colony in Bombay, India in 1859 (Kangmin and 223 224 Ho 2006). New Zealand also had anaerobic digesters producing biogas from manure in the mid-19th 225 century (Bond and Templeton 2011). The technology became widespread in south China by the late 19th 226 century (Gregory 2010). In the 1920s and 1930s, again in the late 1950s and early 1960s, and during the 227 1970s energy crisis, innovation in anaerobic digestion technology and built capacity increased at a rapid 228 rate in China (He 2010).

229

230 The first U.S. invention to employ anaerobic digestion is generally recognized to be the Cameron Septic

Tank, patented in 1899 (Cameron, Commin, and Martin 1899). However, the untreated solids removed

from these early anaerobic septic tanks were seen as having little value as fertilizer (Talbot 1900). On the

other hand, aerobically treated sewage sludge was already seen as suitable for use as a fertilizer by the late

1800s (Goodhue 1897). The first anaerobically digested sewage sludge that was commercially produced on

a large scale – Milorganite – was introduced in 1926 (Kadish 1928; Milorganite 2016). The Milwaukee
 Metropolitan Sewerage District used a two-step activated process: wastewater is first anaerobically

digested (MMSD 2016), and is then aerated and dried before it is applied to agricultural land (Milorganite

238 239

2004).

240 Investigations into the anaerobic treatment of industrial wastewater – including food processing waste –

began in the 1920s, but adoption was limited until the 1950s (P. McCarty 2001). Most food waste was fed to

242 livestock, primarily pigs (Vaughn 2009). The balance of household food waste not fed to pigs was

243 landfilled. When food industry waste was anaerobically digested, it was most often from facilities that

were commingled with municipal sewage. With the passage of the Clean Water Act and the energy crisis of

245 the 1970s, food processors, pulp and paper manufacturers, and other industries that had biomass by-

products found it economically feasible to install anaerobic digesters to handle their waste streams and
 produce methane (Speece 1983; Coombs 1990).

248

249 Similar economic conditions led to the adoption of anaerobic digestion technology on U.S. farms,

250 particularly large-scale animal operations with unprecedented amounts of manure. Historically, manure

251 was either directly applied to land or aerobically composted and land spread. The adaptation of anaerobic

digestion for the treatment of manure and food waste is a relatively recent development. The firstanaerobic digester installed on a farm in the U.S. was located in Iowa in 1970 (Davis 2006).

253 254

With the development of technologies to produce methane from organic matter waste products, such as sewage sludge, animal manure, and food waste, there developed a growing volume of AD as a by-product of the methanogenic process. The practice of greenhouse production using AD as a soil media and substrate has been coined 'digeponics' (Stoknes et al. 2016).

259

260 Organic Foods Production Act, USDA Final Rule:

The Organic Foods Production Act mandates that an organic crop may not be harvested until after a "reasonable period of time determined by the certifying agent to ensure the safety of such crop, after the most recent application of raw manure, but in no event shall such period be less than 60 days after such application" [7 USC 6513(b)(2)(B)(iv)].

265

Anaerobic digestate made of manure feedstocks and digested by a non-chemical process does not appear on the National List as a prohibited nonsynthetic substance at §205.602. If manure-based AD does not meet

268 processing requirements of §205.203(c)(2), it would be subject to the raw manure restriction at §205.203(c),

- which means it may only be (i) applied to land used for a crop not intended for human consumption; (ii)
- incorporated into the soil not less than 120 days prior to the harvest of a product whose edible portion has
- direct contact with the soil surface or soil particles; or (iii) incorporated into the soil not less than 90 days prior to the harvest of a product whose edible portion does not have direct contact with the soil surface or
- 272 prior to the narvest of a product whose earbie portion does not have direct contact with the soil surface of 273 soil particles. Products of anaerobic digestion processes made from non-manure feedstock materials would
- 274 not be subject to this restriction.
- 275

Feedstocks containing synthetic substances not on the National List, and treatments with sulfuric acid or other synthetic substances that are not on the National List for use in anaerobic digestion are prohibited under §205.105(a). The NOSB did not recommend that sulfuric acid be added to the National List for this petitioned purpose (NOSB 2012). Sewage sludge is also prohibited as a feedstock under §205.105(g) and §205.203(e)(2).

280

282 <u>International</u>283

284 Canadian General Standards Board Permitted Substances List (CAN/CGSB-32.311-2015)

- 285 "Digestate, anaerobic" appears in Table 4.2 of the Canadian General Standards Board's Permitted
- Substances List Soil amendments and crop nutrition, with the following annotation: "Permitted to be used for soil amendment, provided that the following conditions are met:
- a) the materials added to the digester shall be listed in Table 4.2. If feedstocks are obtained from off-farm
 sources, the digestate shall comply with the heavy metal restrictions in Table 4.2 Compost from off-farm
 sources;
- b) the criteria for raw manure land application specified in 5.5.2.3 of CAN/CGSB-32.310 shall be met;
- c) anaerobic digestate may be used as a compost feedstock if it is added to other substances which are then
- 293 composted. See Table 4.2 Compost feedstocks" (CAN/CGSB 2015).
- 294

295 CODEX Alimentarius Commission, Guidelines for the Production, Processing, Labelling and Marketing 296 of Organically Produced Foods (GL 32-1999)

Anaerobic digestate is not explicitly mentioned in the Codex Guidelines. Microbial fermentation is

- 298 mentioned as an acceptable process for fertilization and soil conditioning substances [§5.1(a)]. Farmyard
- and poultry manure are permitted with the annotation "Need recognized by certification body or authority
- if not sourced from organic production systems. 'Factory' farming sources not permitted." Slurry and urine
- are also permitted with the annotation "If not from organic sources, need recognized by inspection body.
- 302 Preferably after controlled fermentation and/or appropriate dilution. 'Factory' farming sources not
- permitted." Sorted, composted or fermented home refuse is permitted with the annotation "Need
- recognized by certification body or authority." Human excrements are permitted with the following
- annotation: "Need recognized by the certification body or authority. The source is separated from
- household and industrial wastes that pose a risk of chemical contamination. It is treated sufficiently to eliminate risks from pests, parasites, pathogenic microorganisms, and is not applied to crops intended for
- human consumption or to the edible parts of plants" (FAO/WHO Joint Standards Programme 1999).
- 309

European Economic Community (EEC) Council Regulation, EC No. 834/2007 and 889/2008

- 311 The original European Economic Community Commission (EC) organic food regulation permitted
- household food wastes that had been anaerobically fermented for biogas production. Liquid animal
- 313 excrements were also permitted for use after controlled fermentation when not originating from factory
- farms [EC 2092/91]. *Liquid animal excrements* were included in the 2008 revised regulation.
- 315

٨	Liquid animal	Use after controlled fermentation and/or appropriate dilution	
	Λ	excrements	Factory farm origin forbidden

³¹⁶

317 Composted or fermented household waste was amended to in 2014 to include anaerobic digestate [EC

318 354/2014]. The amendment reads as follows:

В	Composted or fermented mixture of household waste	Product obtained from source separated household waste, which has been submitted to composting or to anaerobic fermentation for biogas production Only vegetable and animal household waste Only when produced in a closed and monitored collection system, accepted by the Member State. Maximum concentrations in mg/kg of dry matter: cadmium: 0,7; copper: 70; nickel: 25; lead: 45; zinc: 200; mercury: 0,4; chromium (total): 70; chromium (VI): not detectable
---	---	---

- 320 The regulation was also amended to create a new entry for Composted or fermented mixture of vegetable matter, with the following text:
- 321

BBiogas digestate containing animal by- products co-digested with material of plant or animal origin as listed in this AnnexAnimal by-products (including by-products of wild animals) of category 3 and digestive tract content of category 2 (categories 2 and 3 as defined in Regulation (EC) No 1069/2009 of the European Parliament and of the Council)* must not be from factory farming origin.	itil tile	in the following text.		
		Biogas digestate containing animal by- products co-digested with material of plant or animal origin as	category 3 and digestive tract content of category 2 (categories 2 and 3 as defined in Regulation (EC) No 1069/2009 of the European Parliament and of the Council)* must not be from factory farming	

322 * "Regulation (EC) No 1069/2009 of the European Parliament and of the Council of 21 October 2009 laying

323 down health rules as regards animal by-products and derived products not intended for human

324 consumption and repealing Regulation (EC) No 1774/2002 (Animal by-products Regulation) (OJ L 300,

- 325 14.11.2009, p. 1)" (EU Commission 2008).
- 326

327 Japan Agricultural Standard (JAS) for Organic Production

328 Anaerobic digestate is not explicitly mentioned in the Japanese Agricultural Standard. Appendix 1,

329 Materials for Fertilizer and Soil Improvement includes a listing for "Other fertilizer and soil improvement

330 materials" with the annotation, "Those (including the living things) applying to the soil for providing the

- 331 plants with nutrition or changing the soil property so as to contribute to the cultivation of the plants, and
- 332 those (including living things) for applying to the plant to provide it with the nutrition; and the natural
- 333 substance or those derived from natural substances (those produced by burning, calcining, melting, dry
- 334 distillating, and saponifying the natural substances and those produced of the natural substances without

335 using any chemical method) and addition of no chemosynthetic substance" (Japan MAFF 2000).

336

337 **IFOAM - Organics International**

338 The IFOAM Standards permit "Biodegradable processing by-products, plant or animal origin, e.g. by-339 products of food, feed, oilseed, brewery, distillery or textile processing – Free of significant contaminants; 340 or composted before bringing onto organic land and confirmed free of significant contaminants" (IFOAM 341 2014).

342

343	Evaluation Questions for Substances to be used in Organic Crop or Livestock Production
344	
345	Evaluation Question #1: Indicate which category in OFPA that the substance falls under: (A) Does the
346	substance contain an active ingredient in any of the following categories: copper and sulfur
347	compounds, toxins derived from bacteria; pheromones, soaps, horticultural oils, fish emulsions, treated
348	seed, vitamins and minerals; livestock parasiticides and medicines and production aids including
349	netting, tree wraps and seals, insect traps, sticky barriers, row covers, and equipment cleansers? (B) Is
350	the substance a synthetic inert ingredient that is not classified by the EPA as inerts of toxicological
351	concern (i.e., EPA List 4 inerts) (7 U.S.C. § 6517(c)(1)(B)(ii))? Is the synthetic substance an inert
352	ingredient which is not on EPA List 4, but is exempt from a requirement of a tolerance, per 40 CFR part
353	180?
354	

These OFPA categories apply only to synthetic substances, and are not applicable to AD products comprised of only nonsynthetic substances. It is not apparent in which OFPA category synthetic chemically treated anaerobic digestate falls. Previous petitioners have implied that food waste and manure are comparable to 'fish emulsions' (Torello 2012; A Callendrello 2015). However, there does not appear to be any explicit statutory authority in OFPA to allow for the synthetic chemical treatment of food waste or manure the way there is for fish emulsions.

361 362

Evaluation Question #2: Describe the most prevalent processes used to manufacture or formulate the
 petitioned substance. Further, describe any chemical change that may occur during manufacture or
 formulation of the petitioned substance when this substance is extracted from naturally occurring plant,
 animal, or mineral sources (7 U.S.C. § 6502 (21)).

367

368 <u>Summary of Anaerobic Digestion Process</u>
 369

Anaerobic digestate is a product of organic matter that is fermented in the absence of atmospheric oxygen.

371 The prevalent use of anaerobic digestion in the United States is in the treatment of sewage sludge. The EPA

372 classifies operations that use anaerobic digestion to treat waste by whether they are municipal, agricultural

- or industrial. As of August 2015, there were 1,270 sewage treatment plants, 247 commercial livestock
- operations, and 98 other facilities that produced biogas in the United States (US EPA 2015). The last
- category included municipal food digesters, single source industrial digesters, and co-digesters on farms
- and waste-water treatment plants. A system flow diagram that shows the basic steps of the process is contained in Figure 1.
- 377 cont 378

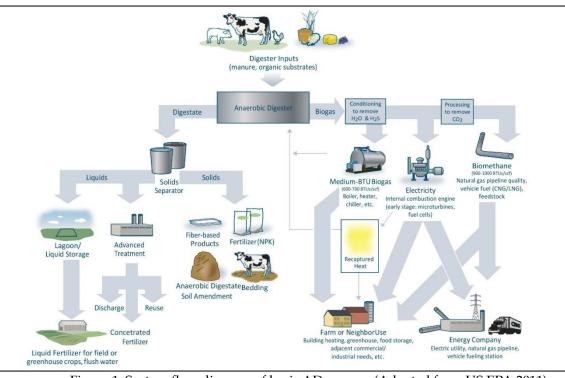


Figure 1: System flow diagram of basic AD process (Adapted from US EPA 2011)

381382 Feedstocks

383 Virtually any form of organic matter can be used as a feedstock for AD. The ingestate – the mix of raw

384 feedstocks fed into the digester - can be highly variable. Sewage sludge and livestock manure from CAFOs

accounts for most of the feedstocks used to produce anaerobic digestate. Household food waste - the post-

consumer organic matter discarded in the preparation of meals – and green waste – lawn and yard debris

May 15, 2017 Page 9 of 29

- are potential sources from the municipal solid waste (MSW) stream. These sources may be blended with
 sewage sludge and/or CAFO manure.

389

390 Industrial effluent from a variety of sources may also be used. Industrial waste sources that are potential

391 feedstocks for the anaerobic production of methane include food processing wastes, spent mash from

ethanol and other biofuel production, paper mill sludge, coal conversion condensates, and deionized
 industrial process wastewaters (Speece 1983). Fish wastes may also be anaerobically digested with a liquid

industrial process wastewaters (Speece 1983). Fish wastes mfertilizer (Ferguson 1990).

395

Blending a variety of agricultural, household, municipal, and industrial feedstocks enables the carbon-tonitrogen (C:N) ratio and pH of the ingestate to be adjusted to optimal ranges for the production of methane (Ward et al. 2008). Outside the U.S., particularly in China and India, it is a common practice for there to be 'rural digesters' that combine animal manures, human wastes, and crop residues to produce biogas and fertilizer (Coombs 1990).

401

402 Methane digestion reactor vessels work best at a continuously and sustainably high throughput of

403 ingestate. Manure is considered a relatively poor feedstock for methane production, but is the preferred

404 feedstock for digestate fertilizer use. Industrial wastes are more productive feedstocks for methane

405 production, but the resulting digestate is relatively poor as a fertilizer. Combining animal manure and

406 industrial wastes on a large scale dramatically improves the economic return on investment of a methane

digestion plant (Tafdrup 1995). Methane yields are higher than for animal manure alone, and the

408 digestate's fertilizer value is greater than for industrial waste alone. Source separation of feedstocks

- 409 increases handling costs and decreases plant efficiency.
- 410

411 Additives and other ingredients

412 While the anaerobic digestion process can take place without chemical additives, various substances are

used to pre-treat the feedstocks, adjust the substrate during the digestion process, and treat the finished

414 AD. Various other ingredients may be blended with the feedstocks before or injected during the digestion

415 process, which may include acids and bases to adjust the pH, surfactants to dissolve and separate fatty

acids, and sequestrants and chelating agents to precipitate and remove toxic metals. The fate of these

417 various additives would depend on how they are partitioned when the digestate is removed. At least some

can be reasonably expected to remain in either the digestate or the liquor. While it is possible to make some

419 predictions about the likely fate of the additives based on their structure, function and activity, these

420 predictions would need to be empirically tested by third-party peer-reviewed studies to see if these 421 predictions are scientifically valid. Such studies are not available in the literature.

422

423 The most common chemical pre-treatment is the use of an alkali – usually sodium hydroxide (NaOH) – 424 which increases the digestibility and increases methane yield (Hobson and Wheatley 1993). The treatment 425 also neutralizes the pH of an acidic feedstock. Such treatment may increase the sodium content, depending 426 on how much sodium in solution is leached out of the wastewater. Calcium oxide, calcium hydroxide and 427 potassium hydroxide may also be added to acidic feedstocks to raise the pH as needed. Calcium oxide and 428 calcium hydroxide could be expected to precipitate and remain in the solid portion of the digestate, where 429 they would increase the calcium content as well as raise the pH. Potassium hydroxide would also be likely 430 to precipitate and increase the K₂O value of the digestate. Urea is sometimes added during the process to adjust pH as well as to increase the nitrogen content of the digestate (Boncz et al. 2012). Pre-treatment may 431

432 433

434 For feedstocks that have a C:N ratio that is higher than optimal, ammonia is sometimes added (Hobson

435 and Wheatley 1993; Shah et al. 2015). More often, the C:N ratio is too narrow and NH₃ needs to be stripped,

436 otherwise it is at levels toxic to the methanogenic organisms, particularly thermophilic ones (Hobson 1990).

437 Usually this is done by aeration prior to the anaerobic digestion. The ammonia gas is released into the

438 atmosphere, decreasing the nitrogen content of the anaerobic digestion. The other method is to chemically

also involve ion exchange media.

439 precipitate the ammonia in the substrate by ion exchange. This may be done with various ion exchange 440 media or adsorbents like zeolite, activated carbon or clay (Chen, Cheng, and Creamer 2008). 441 442 Other chemical treatments reported in the literature include hydrochloric, sulfuric and acetic acids; sulfur 443 dioxide; chlorite salts, hypochlorite salts, and zinc chloride (Hobson and Wheatley 1993). Hydrogen sulfide (H_2S) gas can be toxic, and ferric chloride (FeCl₃) is sometimes used to remove it (Hobson and Wheatley 444 445 1993; AM Callendrello, Getman, and Nicholson 2015). Residual sulfide can also be removed from wastewater prior to digestion by aluminum sulfate and ferric chloride (Song, Williams, and Edyvean 2001). 446 447 The aluminum and iron compounds would likely precipitate in the digestate, but some might remain in 448 solution. Empirical studies are needed to determine the actual fate, but are not available in the literature. 449 Sulfuric acid is sometimes used to lower the pH and prevent volatilization of ammonia (Torello 2012). 450 Other additives may be used, some of which are proprietary. The fates of proprietary additives are 451 unknown. 452 453 Resulting fertilizers may be blended with synthetic substances to boost nutrient content as well as to 454 stabilize the product. Commercial products may include calcium nitrate, phosphoric acid, potassium 455 nitrate and urea. 456 457 Outputs 458 The main output of the anaerobic digestion process is biogas, which is purified into methane or natural gas. 459 Methane (CH₄) is the primary commercial product in virtually all cases. Other emitted gases include carbon dioxide (CO_2), volatile ammonia (NH_3), and hydrogen sulfide (H_2S). What is left over from the 460 461 venting of the gas can be further divided into solid and liquid through centrifugal force and thermal 462 dehydration. The liquid portion is known as the liquor and the solid portion is known as the anaerobic 463 digestate. The liquor may be further subdivided into the scum, primarily lipids that float on the surface, 464 and the supernatant, the liquid between the precipitated sludge and the scum. The supernatant is mostly 465 water, but depending on the feedstock and process used, it may be high in dissolved ammonium and phosphate, having a fertilizer value itself. The AD is the dewatered sludge separated from the supernatant. 466 467 468 469 Anaerobic Digestion Technologies 470

471 Two basic types of systems dominate the handling of agricultural wastes in the U.S.: The "Plug Flow" system and the "Complete Mix" system. These two technologies account for over 70% of all anaerobic 472 digestion systems in operation (US EPA 2011). Other systems in the U.S. include "Covered Lagoon," "Up-473 flow Anaerobic Sludge Blanket / Induced Blanket Reactor," "Fixed Film / Attached Media Digester / Anaerobic Filters," "Anaerobic Sequencing Batch Reactors," and "High-Solids Fermentation." Another 474 475

476 relatively new technology is the "Two-Stage Mixed Plug Flow." Many more systems are in place

477 throughout the world. China and India have been the source of many significant innovations in anaerobic 478 digestion technology. Anaerobic digestion systems are commonly used in rural areas in those countries.

479 Two widely-adopted technologies are the "Chinese Dome Digester" and the "India Gobar System."

- 480
- 481 Plug Flow

482 A plug flow digester consists of a long, narrow tank, typically heated and below ground, with an

- impermeable cover to collect the biogas. The contents move through the digester as fresh biomass is added. 483 484 The biomass moves through the system as a 'plug' and is not mixed. Retention time is usually 15 to 20 days (Hamilton 2010).
- 485
- 486
- 487 Complete Mix

A complete mix digester is comprised of an above- or below-ground tank with an impermeable gas-488

- 489 collecting cover (US EPA 2011). The contents are mixed by a motor or a pump. Incoming liquids displace
- 490 an equal amount of liquid in the effluent. The methanogenic bacteria flow out with the displaced liquid
- 491 (Hamilton 2010). May 15, 2017

493 Two Stage Mixed Plug Flow

494 A process referred to as a "two stage mixed plug flow anaerobic digester system" is the subject of the

495 petition (Joblin 2016). This is a relatively new patented technology where the ingestate is received in a

closed mixing chamber, and travels down a heated hairpin turn (Hamilton 2010). The gas generated is used
 to heat the fermenting biomass at a constant temperature (Dvorak 2012). During the second stage,

498 methanogenic bacteria generate methane by the process described in Evaluation Question #3. The system

- 499 is described in greater detail in the petition and the patent (Dvorak 2012; Joblin 2016).
- 500
- 501 Chinese Dome Digester

502 China has the largest biogas production capacity in the world, with millions of rural small-scale anaerobic

digesters that are an integral part of their organic matter recycling, energy production, and water pollution

504 prevention programs. The number of systems installed in China was estimated to be 26.5 million in 2007

505 (Bond and Templeton 2011). Most of these are small scale, in the range of 6-10 m³. The most common 506 design in China is the "China Dome Digester," a spherical concrete pit that is used to store animal

design in China is the "China Dome Digester," a spherical concrete pit that is used to store animal
 manure – mainly from pigs and chickens – along with chopped straw (Kangmin and Ho 2006; He 2010).

- 508 Human waste (nightsoil), crop residues, food processing waste, and organic household waste are also
- 509 commonly commingled as feedstocks (Kangmin and Ho 2006). The gas is stored at the top of a rigid dome
- 510 with a valve to maintain constant pressure. The biogas is piped throughout the village and used for
- 511 cooking, heating, and other gas appliances (Hobson and Wheatley 1993). In the Northern provinces, the
- 512 biogas is used for heating greenhouses used for year-round vegetable production. Both the liquid sludge
- 513 and sediment of the AD are applied as fertilizers (Gregory 2010).
- 514
- 515 Indian Gobar System

516 There were over 3 million biogas plants in India as of 1999, and the number is estimated to be over 4

517 million at present (Bond and Templeton 2011). Most anaerobic digesters in India follow a design that is

referred to as the 'gobar' system, after the Hindi word for 'cow dung'. Prior to the introduction of these

- systems, cow dung was dried and burned as a cooking fuel, leading to organic matter loss and inefficient
- 520 heat exchange compared with biogas. The primary feedstock is dairy manure, but gobar anaerobic
- 521 digesters may also use human waste, crop residues, and organic household wastes (Hobson 1990). These
- have a cylindrical metal tank that floats inside the digester and rises and falls with the feedstock and biogas content.
- 523 co 524

525 Effect of technologies on end product

All of the systems are designed primarily for their efficiency in biogas generation and yield (Tafdrup 1995;
Ward et al. 2008). Fertilizer is considered a by-product. In a search of the literature, no study was found

ward et al. 2000). Fertilizer is considered a by-product. In a search of the literature, no study was found
 that directly compared the other end products – the digestate and the liquor – for their fertilizer value and

toxicity. The quality of the digestate is more a function of the feedstocks than of the technology used to

530 process it (Al Seadi et al. 2013; Möller 2016). Plug flow systems can be expected to have greater variability

- process it (AI Seadi et al. 2013; Moller 2016). Plug flow systems can be expected to have greater variability in fartilizer quality than complete mix systems, particularly when different foodetocks are introduced.
- 531 in fertilizer quality than complete mix systems, particularly when different feedstocks are introduced
- during the process. Original third-party peer-reviewed research would be needed to make scientifically
 valid comparisons of the nutrient content, physical quality, and contaminant levels of the four
- value comparisons of the nutrient content, physical quality, and contaminant levels of the predominant technologies used to generate bioges with the potitioned system.
- 534 predominant technologies used to generate biogas with the petitioned system.
- 535 536

537 <u>Evaluation Question #3:</u> Discuss whether the petitioned substance is formulated or manufactured by a 538 chemical process, or created by naturally occurring biological processes (7 U.S.C. § 6502 (21)).

- 539
- 540 Anaerobic digestion of organic matter is a natural bacterial fermentation process. Anaerobic digestate
- 541 made from agricultural feedstocks or source-separated household food wastes, lawn clippings, and other
- 542 plant material, and digested by a microbial process without chemical treatments is considered nonsynthetic
- 543 and is not prohibited by §205.105 or §205.602.
- 544

545 The series of reactions that takes place during anaerobic digestion is complex and variable, but essentially

involves a series of oxidation-reduction reactions to form hydrogen, carbon dioxide and acetic acid, and
 finally the carbon dioxide reacts with hydrogen to form methane (Abbasi, Tauseef, and Abbasi 2012). The

process can be simplified to involve three distinct phases: (1) hydrolysis and acidogenesis, (2) acetogenesis

and dehydrogenation, and finally (3) methanogenesis (Miyamoto 1997). Each stage relies on a different

550 consortium of microorganisms.

551

552 During the first phase, a number of organisms decompose the long carbon chain polymers into soluble

553 sugars by hydrolysis. These organisms excrete various enzymes, such as cellulase and lignase. In the 554 process, these organisms also hydrolyze proteins into soluble amino acids and form fatty acids

for the set of galaxies and form fatty actors and form fatty actors
 (acidogenesis). These catabolic reactions are described in reactions (1) and (2) (Gerardi 2003).

- 556
- 557

(1) cellulose + $H_2O \xrightarrow{hydrolysis}$ soluble sugars (2) proteins + $H_2O \xrightarrow{hydrolysis}$ soluble amino acids

558 559

Various alcohols, esters and conjugate bases are also formed in the fermentation process. Among the most
 common acidogenic bacteria found in digesters are species of *Acetivibrio, Bacteroides, Bifidobacterium, Butyrivibrio, Clostridium, Enterobacteriaceae, Eubacterium, Lactobacillus, Peptostreptococcus, Propionibacterium, Ruminococcus, Selanomas* and *Streptococcus* (Archer and Kirsop 1990). This is not an exhaustive list.

563 564

The second phase involves the conversion of the various fatty acids, alcohols, sugars and cellulose into acetic acid and its acetate conjugates, as well as hydrogen. The acetogenic organisms most frequently found in anaerobic digestion are of the genera *Acetobacterium*, *Acetoanaerobium*, *Acetogenium*, *Butyribacterium*, *Clostridium*, *Eubacterium* and *Pelobacter* (Archer and Kirsop 1990). Their activity results in the chemical reaction in (3) (Gerardi 2003).

570 571

572

(3) $CH_3COOH \rightarrow CH_4 + CO_2$

573 In the third and final phase, the methane generating (methanogenic) organisms use the acetates and 574 hydrogen as substrates to produce methane. Methanogenic organisms include members of the genuses 575 *Methanobaterium, Methanobrevibacter, Methanosarcina, Methanococcus, Methanogenium, Methanomicrobium* and 576 *Methanospirillum*. While some of the organisms in the first two phases are oxygen-tolerant, all the 577 methanogenic organisms are strictly anaerobic and cannot survive in the presence of atmospheric oxygen 578 (O₂) (Gerardi 2003). The production of methane is summarized in reaction (4) (Gerardi 2003).

579 580

(4) $CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$

The process may be mesophilic, with temperatures in the range of 15-45°C (60-113°F), or thermophilic at
temperatures in the narrower range of 50-65°C (122-149°F) (Hobson 1990). However, thermophilic
anaerobes are very sensitive to temperature changes and the methanogenic process generally will falter in
the 40-45°C range (Gerardi 2003). For that reason, the prevalent anaerobic digestion technologies are
mesophilic at present.

587

588 Once the anaerobic digestion process is complete, the digestate can be applied directly to the land, or it 589 may be further treated for pathogens. Mesophilic AD is more likely to require further pathogen reduction than thermophilic AD. Processes recognized by the EPA to significantly reduce pathogens (PSRP) include 590 aerobic composting; acidification with sulfuric acid, followed by ozone treatment and addition of sodium 591 592 nitrite; and addition of cement kiln dust or lime kiln dust (US EPA 2016b). Processes to further reduce 593 pathogens (PFRP) include aerobic composting; treatment with chlorine dioxide followed by addition of 594 sodium nitrite; microwave treatment; calcium oxide (quicklime); ozonation followed by nitrate treatment; 595 sulfuric acid followed by lime; steam heat; thermal biooxidation and agitation (US EPA 2016b).

596

597	
598	Evaluation Question #4: Describe the persistence or concentration of the petitioned substance and/or its
599	by-products in the environment (7 U.S.C. § 6518 (m) (2)).
600	
601	Anaerobic digestate is readily biodegradable. However, non-biodegradable contaminants such as plastics,
602	glass, and heavy metals may persist, accumulate and concentrate in the environment over time
603	(Alburquerque et al. 2012; Nkoa 2014). These issues are further discussed in Evaluation Questions #5 and
604	#6.
605	
606	Evolution Organization #5. Describe the torisity and made of estion of the substance and of its
607 608	Evaluation Question #5: Describe the toxicity and mode of action of the substance and of its
608 609	breakdown products and any contaminants. Describe the persistence and areas of concentration in the environment of the substance and its breakdown products (7 U.S.C. § 6518 (m) (2)).
610	environment of the substance and its breakdown products (7 0.3.C. § 0510 (m) (2)).
611	The main contaminants of toxicological / health concern are (1) pathogens, (2) heavy metals, and (3) other
612	chemical contaminants. Human pathogens are addressed in Evaluation Question #10.
613	enemieur comuninarius. Frantari paulogens are adaressea în Evaluation Question #10.
614	Heavy metals
615	Compost from agricultural wastes is less likely to have cadmium and lead than industrial effluent or
616	sewage sludge, but these metals may be introduced in mixed waste streams (Nkoa 2014). The metal
617	contaminants of greater concern in livestock systems are copper and zinc (Massé, Croteau, and Masse
618	2007). There is evidence that these metal contaminants in animal manure result from excessive
619	supplementation (Brugger and Windisch 2015).
620	
621	Other chemical contaminants
622	The most likely chemical contaminants of AD are considered to be phthalates from degraded plastics and
623	pesticides (Zemba et al. 2010). Plastics and glass are common contaminants in source separated household
624	food waste. Pesticides are found both in livestock manure from conventional operations and as residual
625	contaminants of non-organic food.
626	
627	Manure from conventional farming operations may contain antibiotics, anthelmintics, other animal drugs
628	and pesticides, as well as various other chemicals used as production aids. Feedstocks from conventional
629	agriculture – including food waste from crops grown with pesticides – can be contaminated with pesticide
630	residues. While the digestion process may decompose some of these substances, some are more persistent
631	than others. Crop residues from conventional farms may also have the potential to be contaminated with
632	pesticides prohibited in organic production (Battersby and Wilson 1989; Chen, Cheng, and Creamer 2008;
633 634	Govasmark et al. 2011).
635	One study (Battersby and Wilson 1989) looked at the degradation and persistence of 77 potential chemical
636	contaminants of AD feedstocks. These included agricultural chemicals, such as pesticides that would be
637	residues found in conventional agricultural by-products, and various chemicals that would likely be found
638	in industrial wastewater and municipal sewage sludge. Some were degraded completely, some were
639	partially degraded to some degree, and some were persistent, being concentrated by the volume reduction
640	of the digestion process. Synthetic pyrethroids were readily biodegradable in anaerobic conditions. Among
641	the pesticides that were persistent were the chlorinated hydrocarbons lindane and dieldrin. The slimicide
642	pentachlorophenol (PCP) inhibited digestion microorganisms, and was considered not to have a
643	biodegradation potential. The herbicides 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-
644	trichlorophyoxyacetic acid (2,4,5-T) were degraded relatively quickly. However, PCP, 2,4-D, and 2,4,5-T
645	have been shown, under the reductive conditions of anaerobic digestion, to be dechlorinated into 3,4-
646	dichlorphenol and 4-chlorophenol (Mikesell and Boyd 1985). The substance 4-Chlorophenol was the most
647	persistent of the chlorophenols in methanogenic river sediments (NLM 2016). Some of the non-
648	biodegradable substances inhibited the digestion processes because of their toxicity to the fermentation
649	organisms. Among the families of compounds that are potential inhibitory contaminants of anaerobic
	May 15, 2017 Page 14 of 29

650 651 652 653 654 655	digestion are alkyl benzenes, halogenated benzenes, nitrobenzenes, phenols and alkyl phenols, nitrophenols, alkanes, halogenated aliphatics, alcohols, halogenated alcohols, ethers, ketones, acrylates, carboxylic acids, amines, nitriles, amides, and pyridine and its derivatives (Chen, Cheng, and Creamer 2008). The severity of inhibition is primarily a function of toxicant concentration and exposure time; recovery is a function of biomass concentration, retention time and temperature (Yang and Speece 1985).
656 657	With the increased use of nanomaterials in conventional agriculture and food processing, these are expected to become a potential source of contamination. Under experimental conditions, various
658 659 660	nanoparticles have been shown to dramatically inhibit the anaerobic digestion process and methane generation because of their toxicity to digester microorganisms (Ganzoury and Allam 2015).
661 662 663	<u>Evaluation Question #6:</u> Describe any environmental contamination that could result from the petitioned substance's manufacture, use, misuse, or disposal (7 U.S.C. § 6518 (m) (3)).
664	peritoned substance's manufacture, use, misuse, of disposal (7 0.3.C. § 0316 (m) (3)).
665 666 667 668 669 670 671	Concentrated animal feeding operations (CAFOs) are a primary source of feedstocks for commercially produced AD (US EPA 2004). The large-scale confinement of animals produces a great volume of manure that poses a risk of environmental contamination. CAFOs are a significant source of environmental pollution and pose risks related to water contamination, greenhouse gas emissions, aerosol pollutants, heavy metal contamination, and farm chemicals such as pesticides, antibiotics, and growth hormones. Manure is also a vector for human and animal pathogens.
672 673 674 675 676 677 678 679 680	The EPA conducted a risk assessment of CAFOs and considered anaerobic digestion to be a potential risk management strategy for CAFOs, but acknowledged that the strategy requires additional research (US EPA 2004). The complexity and capital investment required for anaerobic digestion are barriers to adoption by producers. At the time of the risk assessment, the EPA estimated the failure rate of complete-mix aerobic digesters to be 70% and the failure rate of plug-flow mixers to be 63% (US EPA 2004). The causes of anaerobic digester failures are poor design, improper installation for the site, poor equipment specification, inability to maintain temperatures sufficient for digestion, insufficient insulation, inadequate screening and separation, high maintenance, and equipment malfunctions. Aerobic digester system failures result in spills, water pollution, excessive nutrient runoff, and nuisance odors.
 681 682 683 684 685 686 687 688 	Livestock wastes collected from CAFOs may have detectable levels of antibiotics and growth hormones (US EPA 2004). Environmental contamination from the antibiotics depends on the persistence of the specific antibiotics used and the levels found in the slurry. If sufficiently diluted, the residual antibiotics in the slurry can be biodegraded (Hobson and Wheatley 1993). However, at higher concentrations, such as when every animal in the operation is receiving therapeutic doses, the antibiotics have been observed to severely interfere with the microbial decomposition process (Fischer, Iannotti, and Sievers 1981).
689 690 691 692 693 694 695	The presence of antibiotics in CAFO manure creates conditions for the selection of antibiotic-resistant microorganisms (US EPA 2004). Antibiotic-resistant bacteria are able to persist in the presence of antibiotics in ingestate and can become prevalent in anaerobic digesters (Resende et al. 2014). While these organisms help to degrade antibiotics, their persistence increases the occurrence of antibiotic resistant genes in the bacterial population (Aydin, Ince, and Ince 2016). The antibiotic resistant plasmids found in AD populations are transferable to non-resistant bacteria (Wolters et al. 2015).
696 697 698 699 700	<u>Evaluation Question #7:</u> Describe any known chemical interactions between the petitioned substance and other substances used in organic crop or livestock production or handling. Describe any environmental or human health effects from these chemical interactions (7 U.S.C. § 6518 (m) (1)).
700 701 702	Most of the interactions between AD and other substances used in organic production are biological and not strictly chemical in nature. AD can be reasonably expected to act like other organic soil amendments in <i>May 15, 2017 Page 15 of 29</i>

increasing cation exchange capacity (CEC), increasing the ability of soil to retain moisture, and bufferingsoil from rapid changes in pH.

705 706

Evaluation Question #8: Describe any effects of the petitioned substance on biological or chemical
 interactions in the agro-ecosystem, including physiological effects on soil organisms (including the salt
 index and solubility of the soil), crops, and livestock (7 U.S.C. § 6518 (m) (5)).

711 In general, the addition of organic matter from AD has a beneficial effect on soil ecology and health (Walsh,

712Jones, et al. 2012; Nkoa 2014; Möller 2016). A review of the literature found that most studies showed AD

increased overall soil biological activity compared with either non-organic (conventional) fertilizer
 application or a no-treatment control (Möller 2015). Compared with a no-treatment control and mineral

(chemical) fertilizer, anaerobic digestate increased the population of organic matter decomposing bacteria

and the soil became bacterially dominated in relation to soil fungi (Walsh, Rousk, et al. 2012).

717

 718
 Studies that compared AD with undigested / uncomposted feedstocks and with compost provided results

that were less clear. The addition of AD from slaughterhouse waste, source-separated household food

waste, pig slurry, and distillers waste to soils in Sweden significantly improved soil microbial nitrogen
 mineralization and the potential ammonia oxidation rate (Abubaker, Risberg, and Pell 2012).

721 722

There is no evidence that AD is toxic to earthworms. Barley fields in Denmark that had digestate from

vegetative feedstocks showed no significant difference in earthworm populations (Frøseth et al. 2014).

Anaerobic digestate can be composted with earthworms. Vermicompost made from AD with the

earthworm species *Perionyx excavatus* and *Perionyx sansibaricus* concentrated nutrients, reduced fecal

coliform levels to below detection, and increased stability (Rajpal et al. 2014).

729 The salinity of AD will vary according to the ingestate and process used. The salt content of AD is 730 generally higher than the salt content for compost (Möller 2016). Feedstocks that lead to the greatest 731 salinity in the AD include marine fish processing waste water (Omil, Méndez, and Lema 1995; Guerrero et 732 al. 1997), marine microalgae (Mottet, Habouzit, and Stever 2014; Shah et al. 2015), and pig slurry (Moral et 733 al. 2008; Zhang, Lee, and Jahng 2011). Excessive salinity in the ingestate can inhibit methanogenesis (Shah 734 et al. 2015). Pretreatment with water can leach sodium and chlorine in solution and reduce the electrical 735 conductivity. However, pretreatment with sulfuric acid increases the salinity of the liquid (Tampio, 736 Marttinen, and Rintala 2016).

737

The majority of trials with agronomic and vegetable crops show that AD is beneficial for plant growth, at least compared with mineral (chemical) fertilizer and with no fertilizer; there were some contrary results in a review of the literature (Möller and Müller 2012). In situations where yields were reduced and quality degraded by the AD treatment, there was evidence that the amendment was phytotoxic. Germination has been negatively correlated with ammonia nitrogen, fatty acids, and volatile organic acids, suggesting these constituents in AD may be harmful to crops when applied in excess (Poggi-Varaldo et al. 1999; Walker,

744 Charles, and Cord-Ruwisch 2009; Prays and Kaupenjohann 2016).

745

With systems that produce biofuel co-products, the continuous production of corn (maize) has led to a loss
of biodiversity. In these cases, the solid biomass left after the fermentation of corn to make bioethanol is
anaerobically digested to produce biogas, frequently co-digested with pig slurry collected from CAFOs.
The anaerobic digestate is returned to the corn fields. The ecological efficiency of such a system has been
questioned (Svoboda et al. 2015). Efforts to find alternative biofuel crops that increase biodiversity and

reduce dependence on fossil fuel inputs have had limited success (Mast et al. 2014).

752

753 With respect to livestock, the EU Expert Group for Technical Advice on Organic Production noted that

animal by-products from factory farms should be excluded for all feedstocks used in biogas digestate
 applied to organic farms because of animal welfare concerns (EGTOP 2011).

May 15, 2017

758 Evaluation Question #9: Discuss and summarize findings on whether the use of the petitioned substance may be harmful to the environment (7 U.S.C. § 6517 (c) (1) (A) (i) and 7 U.S.C. § 6517 (c) (2) (A) 759 760 (i)).

761

762 Risks to the environment depend on the feedstocks and the quality of the finished AD. Heavy metal

- 763 contamination and persistent chemical contamination are potentially harmful to the soil (Nkoa 2014).
- 764 Long-term research on the effects of repeated application of AD from agricultural or source separated 765 household wastes have not been conducted. The risks from CAFOs and industrial wastewater feedstock
- 766 sources may be comparable to the environmental risks posed by sewage sludge.
- 767

768 Over-application and/or poorly timed application of AD can result in environmental damage similar to the

- 769 misapplication of raw manure and compost. Application on frozen ground will result in poor
- 770 incorporation into the soil and is likely to lead to runoff into surface water when the soil thaws if there is a 771 snow melt or heavy rains. Loading rates higher than what can be incorporated into the soil may also cause
- 772
- nutrient leaching into groundwater and runoff into surface waters, particularly nitrogen and phosphorous
- 773 (Holm-Nielsen, Al Seadi, and Oleskowicz-Popiel 2009; Nkoa 2014). While anaerobic digestion and biogas 774
- generation reduce greenhouse gas emissions, production of biogas in CAFOs and the application of 775 unstable AD may lead to increased water pollution in sensitive watersheds, compared with a more
- 776 systems-based approach to manure management (Svoboda et al. 2013).
- 777

778 While AD reduces greenhouse gas (GHG) emissions compared with liquid manure stored in slurry pits, it

- 779 does release some greenhouse gases (Holm-Nielsen, Al Seadi, and Oleskowicz-Popiel 2009). For sorted 780
- municipal solid waste, anaerobic digestion had the lowest GHG emission factor compared with in 781
- decreasing order-landfilling, incineration and composting (Mata-Alvarez, Macé, and Llabrés 2000). 782
- Contamination of even pre-sorted household food scraps and other organic matter collected by municipal 783 solid waste is a possibility. Despite the risks, the EPA regards aerobic digestion to be a favorable alternative
- 784 to landfilling and incineration of the organic fraction in municipal solid waste (US EPA 2015).
- 785 786

787 Evaluation Question #10: Describe and summarize any reported effects upon human health from use of 788 the petitioned substance (7 U.S.C. § 6517 (c) (1) (A) (i), 7 U.S.C. § 6517 (c) (2) (A) (i)) and 7 U.S.C. § 6518 789 (m) (4)). 790

- 791 The principal human health concern from AD is food-borne pathogens. Microorganisms that produce
- 792 various natural toxins, such as the verotoxins from *Escherichia coli* O157: H7, *Campylobacter spp.*,
- 793 *Cryptosporidium paroum, Listeria monocytogenes, Salmonella* spp., and *Clostridium* spp. are commonly found in
- 794 manure and food waste. Various foodborne pathogens are a concern with animal manure and other animal
- 795 by-products used as feedstocks for AD. Public health incidents, such as outbreaks of verotoxin producing
- 796 E. coli, and Salmonella spp. have been linked to manure contamination of drinking water and food (US EPA
- 797 2004). Several peer-reviewed papers document that foodborne pathogens commonly survive the anaerobic 798 digestion process, as summarized in Table 2. In particular, spore-forming pathogens are the most likely to
- 799 remain viable after the anaerobic digestion process (Franke-Whittle and Insam 2013; Nkoa 2014).
- 800
- 801

Pathogen	Feedstock(s)	Source(s)
Bacillus anthracis	Slaughterhouse wastes	(Franke-Whittle and Insam 2013)
Campylobacter jejuni	Dairy slurry	(Kearney, Larkin, and Levett 1993)
Clostridium spp.	Animal slurry; Cow dung and	(P. Olsen and Thorup 1984; Alfa et al.
	Poultry litter; Slaughterhouse	2014; Franke-Whittle and Insam 2013;
	wastes	Silvia Bonetta et al. 2014)
Escherichia spp.	Cow dung and Poultry litter;	(Alfa et al. 2014; Murphy et al. 2016)
	Food waste and animal manure	
Klebsiella spp.	Cow dung and Poultry litter	(Alfa et al. 2014)
Listeria monocytogenes	Agricultural wastes; Household	(Kearney, Larkin, and Levett 1993; Silvia
	food wastes	Bonetta et al. 2014; Maynaud et al. 2016;
		Murphy et al. 2016)
Salmonella spp.	Dairy slurry	(Kearney, Larkin, and Levett 1993;
		Murphy et al. 2016)
<i>Shigella</i> spp.	Cow dung and Poultry litter	(Alfa et al. 2014)
Yersinia enterocolitica	Dairy slurry	(Kearney, Larkin, and Levett 1993)

802 Table 2: Pathogens Surviving in Anaerobic Digestate

803

804 The microbial populations of aerobic and anaerobic conditions are different (Gerardi 2003). While the

anaerobic digestion process is documented to reduce certain pathogens, anaerobic conditions pose a

806 different set of foodborne pathogen risks than would be found under aerobic conditions. Field validation of

treatment processes is needed to verify that pathogens are not able to survive the anaerobic digestion

808 process and migrate onto harvestable plant parts (Gerba and Smith 2005). That is because several

pathogens are able to survive or at least remain viable after the anaerobic digestion process, but would be

810 unlikely to survive aerobic composting. The indicator species used for aerobic compost, *E. coli* and

Salmonella spp. may not be appropriate for anaerobic conditions. The indicator pathogens used for quality
 assurance of digested residues in Denmark are *Salmonellae*, *Listeria*, *Campylobacter* and *Yersinia* (Sahlström)

813 2003).

814

Salmonella is a likely pathogen in both aerobic and anaerobic conditions. It is the most common cause of
 foodborne enteritis in the U.S., and is responsible for the most food poisoning hospitalizations and deaths

(Scallan et al. 2011). *Salmonella* species are able to survive in mesophilic digestion processes, but are more
likely to be reduced in thermophilic conditions (J. E. Olsen and Larsen 1987; Sahlström 2003).

819

820 Another pathogen of particular concern for AD from agricultural wastes is the facultative anaerobic

- bacterium *Listeria monocytogenes* (Maynaud et al. 2016). *Listeria monocytogenes* is the organism responsible
- for listeriosis, and is fatal in almost 16% of all cases in the U.S. (Scallan et al. 2011).
- 823

Bacteria of the *Clostridium* genus are obligate anaerobes, which means that they are unable to carry out metabolic functions or reproduce in the presence of atmospheric oxygen. However, unlike other obligate

anaerobes, *Clostridium* species produce endospores that enable them to remain viable under aerobic

anactores, Custimum species produce endospores that enable them to remain viable under derodic

conditions. The human pathogen *Clostridium perfringens* is a common source of foodborne illnesses, and is
 responsible for Pig-bel Syndrome. *Clostridium tetani* is responsible for tetanus. *Clostridium botulinum* is

relatively rare, but it is the organism responsible for producing the toxin that causes botulism, which is

more serious. Anaerobic digestion did not reduce *C. perfringens* in several cases (Bagge, Sahlström, and

- Albihn 2005; Si Bonetta et al. 2011; Silvia Bonetta et al. 2014).
- 832

833 Another foodborne pathogen of concern with AD is *Campylobacter jejuni*. While *Campylobacter* is a

834 microaerophile, meaning that it requires some oxygen, it also thrives in oxygen-poor conditions. Anaerobic

- 835 digestion was found to have little effect on *Campylobacter jejuni* populations after 112 days of digestion
- 836 (Kearney, Larkin, and Levett 1993).
- 837

838 839 840 841 842	Lettuce grown on peat with AD liquid inoculated with <i>E. coli</i> O157:H7, <i>Salmonella</i> and <i>Listeria monocytogenes</i> resulted in contamination of the leaves with all three pathogens. The <i>E. coli</i> O157:H7 and <i>Salmonella</i> both were internalized by the lettuce, while the <i>Listeria monocytogenes</i> was on the surface (Murphy et al. 2016). The study found that the pathogen levels were higher with AD liquid than with composted food waste. The AD process and the moisture content of the AD were not reported.
843 844 845 846 847	<i>Bacillus anthracis,</i> the vector responsible for anthrax, was observed to survive anaerobic digestion of slaughterhouse wastes (Franke-Whittle and Insam 2013). The organism can be grown in either aerobic or anaerobic conditions, and also forms spores that can remain viable after thermophilic temperatures (J. E. Olsen and Larsen 1987).
848 849 850 851 852 853	Prions, the vectors that transmit bovine spongiform encephalopathy (BSE), are not considered to be adequately digested in the fermentation process (Franke-Whittle and Insam 2013). Anaerobic digestate in the EU is required to comply with the EU regulation that limits what animal by-products may be used as fertilizers [EC 142/2011].
 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 	The petition claims that the pathogen reduction in plant and animal materials properly processed in a two stage mixed plug-flow anaerobic digester produced an equivalent heating process to aerobic composting as specified in the NOP regulations at §205.203(c)(2) (Joblin 2016). The petition requests that such AD not be subject to a days-to-harvest interval after application. Laboratory analyses were included in the petition, but the sampling methodology was not described. The results were not peer-reviewed. While AD is not raw manure, it is not aerobically composted. The temperature reported in the petition is 38°C (101°F) (Joblin 2016). This is in the mesophilic range and below the temperature of 131°F specified in the NOP regulations for composting manure at §205.203(c)(2). The carbon-to-nitrogen ratio for the system is not specified. The patent does not make a pathogen reduction claim or provide any evidence that the system reduces foodborne pathogens equivalent to aerobic composting (Dvorak 2012). No peer-reviewed studies were found to support that the petitioned PFRP was effective to a degree equivalent to the aerobic composting requirements for livestock manure specified in the NOP regulations at §205.203(c)(2). Independent research to determine whether the process is equivalent would require original research and is beyond the scope of this report. Other acceptable PFRPs are discussed further in Evaluation Question #11.
870 871 872 873 874	<u>Evaluation Question #11:</u> Describe all natural (non-synthetic) substances or products which may be used in place of a petitioned substance (7 U.S.C. § 6517 (c) (1) (A) (ii)). Provide a list of allowed substances that may be used in place of the petitioned substance (7 U.S.C. § 6518 (m) (6)).
874 875 876 877 878 879 880	Nonsynthetic substances that could be used in place of AD to provide similar functions include aerobic compost, vermicompost, raw manure, various mulches such as straw and leaves, and various plant and animal by-products with fertilizer value, such as blood meal, bone meal, fish meal, soybean meal, alfalfa meal and cottonseed meal (Parnes 1990). There are a number of blended fertilizers made with various ingredients allowed for organic production (CDFA-FFLDRS 2016; OMRI 2016; WSDA 2016).
881 882 883 884 885	Uncomposted (raw) animal manure may be applied to certified organic land, but it may have higher levels of pathogens, and will also be subject to a minimum interval from application to harvest in accordance with §205.203(c). Manure may be heat treated to achieve pathogen reduction comparable to composting, but the product may be unstable, and thermal treatment beyond the thermophilic range will reduce populations of beneficial soil microorganisms.
886 887 888	<i>Comparison of Anaerobic Digestate and Compost</i>
889 890	The definition for compost at §205.2 reads, "The product of a managed process through which microorganisms break down plant and animal materials into more available forms suitable for application <i>May 15, 2017</i> Page 19 of 29

- 891 to the soil. Compost must be produced through a process that combines plant and animal materials with an 892 initial C:N ratio of between 25:1 and 40:1. Producers using an in-vessel or static aerated pile system must 893 maintain the composting materials at a temperature between 131 °F and 170 °F for 3 days. Producers using 894 a windrow system must maintain the composting materials at a temperature between 131 °F and 170 °F for 895 15 days, during which time, the materials must be turned a minimum of five times." 896 The first key difference between AD and compost is in the C:N ratio. In most cases, AD has a larger C:N 897 ratio for the ingestate as well as the digestate. The C:N ratios of the feedstocks used in anaerobic digestion 898 are sometimes as low as 1:1 and seldom higher than 20:1 (Nkoa 2014). As pointed out in Table 1, the C:N 899 ratio of AD is less than 25:1. The stability, maturity, and various other physical, chemical, and biological 900 901 characteristics of AD can be improved by co-composting it with bulky organic material with a higher C:N 902 ratio (Bustamante et al. 2012). Anaerobic digestate from winery wastes was shown to have a greater 903 nitrogen mineralization capacity compared with aerobic compost under laboratory conditions (Canali et al. 904 2011). On the other hand, AD from MSW resulted in lower mineralization and greater immobilization rates 905 than aerobically composted MSW (Larsen et al. 2007). 906 907 The second key difference is that aerobic composting always has a thermophilic step, while most anaerobic digestion processes remain in the mesophilic zone below 55°C (131°F). While thermophilic anaerobic 908 909 digestion is technically feasible, it is not the prevalent technology for reasons explained above – mainly that 910 most methanogenic anaerobic bacteria are mesophiles and that the thermophiles are relatively difficult to 911 manage during the transition phase from the mesophilic to the thermophilic stage. As was shown in 912 Evaluation Question #10, there is evidence that mesophilic human pathogens that are reduced by the 913 thermophilic stage in compost are able to survive mesophilic anaerobic digestion. 914 915 Most of the research on the equivalence of pathogen reduction between aerobic compost and thermophilic 916 anaerobic digestion has been conducted on sewage sludge, but some has been done on manure and the 917 results consistently show that thermophilic processes are more effective than mesophilic processes in 918 reducing pathogens (Gerba and Smith 2005). The EPA's process to further reduce pathogens (PFRP) in 919 sewage sludge by aerobic composting has the same time and temperature requirements as the NOP 920 definition for compost (US EPA 2003). Aerobic composting of AD is recognized as a process to significantly 921 reduce pathogens (PSRP) and a PFRP by the EPA (US EPA 2016b). By contrast, the PFRP for thermophilic 922 anaerobic digestion of sewage sludge that is equivalent to aerobic composting is "liquid sewage sludge is 923 agitated with air or oxygen to maintain aerobic conditions and the mean cell residence time (i.e. the solids 924 retention time) of the sewage sludge is 10 days at 55°C (131°F) to 60°C (140°F)" (US EPA 2003). 925 926 While vermicomposting is not recognized as a PSRP or PFRP by the EPA, it has been demonstrated as an 927 effective way to reduce certain indicator pathogens in AD (Rajpal et al. 2014). However, that study did not 928 look at *Clostridium* spp. or *Listeria monocytogenes*. The EPA also recognizes thermal processing with steam 929 heat, heat drying, or pasteurization; microwave-, beta- or gamma-irradiation; and thermal oxidation and 930 agitation as PFRPs for AD that are equivalent to aerobic composting (US EPA 2003; US EPA 2016b). 931 932 A comparison of AD and aerobic compost made from different blends of agricultural and source-separated 933 household waste feedstocks found that the AD had significantly higher macronutrient (NPK) content 934 (Tambone et al. 2010). The lower carbon content is a partial explanation. The same study found that the nitrogen mineralization rate for the aerobic compost was higher, in part due to the greater stability and 935
- 936
- 937
- 938 There are some environmental advantages that anaerobic digestion has over aerobic composting. One is
- that aerobic composting results in the release of uncontrolled emissions of volatile compounds, such as
- 940 ketones, aldehydes, ammonia, and methane, while these substances are trapped or captured in the
- anaerobic digestion process (Mata-Alvarez, Macé, and Llabrés 2000). As noted in Evaluation Question #5,
- some pesticide contaminants can be degraded by anaerobic digestion. The composting process also has

maturity.

mixed results in the degradation of pesticide and antibiotic contamination. While aerobic composting and
anaerobic digestion yielded comparable results in degrading certain biodegradable pesticides, there were
some differences. In a direct comparison, anaerobic digestion was better able to biodegrade triazole
fungicides than aerobic composting of food waste (Kupper et al. 2008).

947 948

951

Evaluation Question #12: Describe any alternative practices that would make the use of the petitioned
 substance unnecessary (7 U.S.C. § 6518 (m) (6)).

The NOP regulations require the use of soil fertility and crop nutrient management practices in accordance with §205.203. Organic growers rely on crop rotations that include cover crops grown as green manure to cycle nutrients, as well as organic soil amendments, particularly compost (Baker 2009; USDA / NRCS 2016). Nutrient cycling without the use of off-farm inputs can be done by growing cover crops and grazing livestock. Such systems are low-input, low-output, and may not be feasible under various environmental or production circumstances.

- 958 959
- 960

961

References

962	Abbasi, Tasneem, SM Tauseef, and SA Abbasi. 2012. Biogas Energy. Heidelberg, D: Springer.
963	Abubaker, J, K Risberg, and M Pell. 2012. "Biogas Residues as fertilisers-Effects on Wheat
964	Growth and Soil Microbial Activities." Applied Energy 99: 126–134.
965	Abubaker, Jamal. 2012. "Effects of Fertilisation with Biogas Residues on Crop Yield, Soil
966	Microbiology and Greenhouse Gas Emissions." Uppsala, Sweden: Swedish Agricultural

University. http://pub.epsilon.slu.se/8983/1/abubaker_j_120823.pdf.
 Akunna, Joseph C, C Bizeau, and R Moletta. 1993. "Nitrate and Nitrite Reductions with

- Akunna, Joseph C, C Bizeau, and R Moletta. 1993. "Nitrate and Nitrite Reductions with
 Anaerobic Sludge Using Various Carbon Sources: Glucose, Glycerol, Acetic Acid, Lactic
 Acid and Methanol." *Water Research* 27 (8): 1303–1312.
- Al Seadi, Teodorita, Bernhard Drosg, Werner Fuchs, Dominik Rutz, and Rainer Janssen. 2013.
 "Biogas Digestate Quality and Utilization." In *Biogas Handbook: Science, Production and Applications*, 267–301. Oxford, UK: Woodhead.

Alburquerque, José Antonio, Carlos de la Fuente, Alicia Ferrer-Costa, Lucía Carrasco, Juan Cegarra, Manuel Abad, and María Pilar Bernal. 2012. "Assessment of the Fertiliser Potential of Digestates from Farm and Agroindustrial Residues." *Biomass and Bioenergy*40: 181–89. doi:http://dx.doi.org/10.1016/j.biombioe.2012.02.018.

Alfa, MI, DB Adie, SB Igboro, US Oranusi, SO Dahunsi, and DM Akali. 2014. "Assessment of
 Biofertilizer Quality and Health Implications of Anaerobic Digestion Effluent of Cow
 Dung and Chicken Droppings." *Renewable Energy* 63: 681–686.

Archer, DB, and BH Kirsop. 1990. "The Microbiology and Control of Anaerobic Digestion." In *Anaerobic Digestion: A Waste Treatment Technology*, edited by AD Wheatley, 43–89. London, UK: Elsevier.

- Aydin, Sevcan, Bahar Ince, and Orhan Ince. 2016. "Assessment of Anaerobic Bacterial Diversity
 and Its Effects on Anaerobic System Stability and the Occurrence of Antibiotic Resistance
 Genes." *Bioresource Technology* 207: 332–338.
- Bagge, Elisabeth, Leena Sahlström, and Ann Albihn. 2005. "The Effect of Hygienic Treatment on
 the Microbial Flora of Biowaste at Biogas Plants." *Water Research* 39 (20): 4879–4886.
- 989 Baker, Brian. 2009. "Can I Use This Fertilizer on My Organic Farm?"
- https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs144p2_045863.pdf.

991 992	Battersby, Nigel S, and Valerie Wilson. 1989. "Survey of the Anaerobic Biodegradation Potential of Organic Chemicals in Digesting Sludge." <i>Applied and Environmental Microbiology</i> 55
993	(2): 433–439.
994	Boncz, MA, EL Formagini, L da S Santos, RD Marques, and PL Paulo. 2012. "Application of
995	Urea Dosing for Alkalinity Supply during Anaerobic Digestion of Vinasse." Water Science
996	and Technology 66 (11): 2453–2460.
997 998	Bond, Tom, and Michael R Templeton. 2011. "History and Future of Domestic Biogas Plants in the Developing World." <i>Energy for Sustainable Development</i> 15 (4): 347–354.
999	Bonetta, Si, E Ferretti, Sa Bonetta, G Fezia, and E Carraro. 2011. "Microbiological Contamination
1000	of Digested Products from Anaerobic Co-Digestion of Bovine Manure and Agricultural
1001	by-Products." Letters in Applied Microbiology 53 (5): 552-557.
1002	Bonetta, Silvia, Sara Bonetta, Elisa Ferretti, Giorgio Fezia, Giorgio Gilli, and Elisabetta Carraro.
1003	2014. "Agricultural Reuse of the Digestate from Anaerobic Co-Digestion of Organic
1004	Waste: Microbiological Contamination, Metal Hazards and Fertilizing Performance."
1005	Water, Air, & Soil Pollution 225 (8): 2046. doi:10.1007/s11270-014-2046-2.
1006	Brugger, Daniel, and Wilhelm M Windisch. 2015. "Environmental Responsibilities of Livestock
1007	Feeding Using Trace Mineral Supplements." Animal Nutrition 1 (3): 113–118.
1008	Bustamante, MA, JA Alburquerque, AP Restrepo, C De la Fuente, C Paredes, R Moral, and MP
1009	Bernal. 2012. "Co-Composting of the Solid Fraction of Anaerobic Digestates, to Obtain
1010	Added-Value Materials for Use in Agriculture." Biomass and Bioenergy 43: 26–35.
1011	Callendrello, A. 2015. "Anaerobic Digestate – Food Waste." Petition for Inclusion of Synthetic
1012	Substances on the National List of Allowed and Prohibited Substances. NEO Energy,
1013	LLC: Portsmouth, NH.
1014	https://www.ams.usda.gov/sites/default/files/media/Anaerobic%20Digestate%20Petition.p
1015	df.
1016	Callendrello, AM, FW Getman, and RT Nicholson. 2015. System and method for producing
1017	fertilizer from organic waste. US Patent Office 9,133,068, issued September 15, 2015.
1018	https://www.google.com/patents/US9133068.
1019	Cameron, Donald, Frederick J Commin, and Arthur J Martin. 1899. Process of and apparatus for
1020	treating sewage. US Patent Office 634,423, issued October 3, 1899.
1021	Canali, Stefano, Emanuela Di Bartolomeo, Fabio Tittarelli, Francesco Montemurro, Vincenzo
1022	Verrastro, and Donato Ferri. 2011. "Comparison of Different Laboratory Incubation
1023	Procedures to Evaluate Nitrogen Mineralization in Soils Amended with Aerobic and
1024	Anaerobic Stabilized Organic Materials." J. Food Agric. Environ 9: 540–546.
1025	CAN/CGSB. 2015. Organic Production Systems: Permitted Substances List. 32.311-2015.
1026	Ottawa, ON, Canada: Canadian General Standards Board. http://www.tpsgc-
1027	pwgsc.gc.ca/ongc-cgsb/programme-program/normes-standards/internet/bio-org/lsp-psl-
1028	eng.html.
1029	CDFA-FFLDRS. 2016. "Registered OIM [Organic Input Material] Products." Sacramento, CA:
1030	California Department of Food and Agriculture.
1031	https://www.cdfa.ca.gov/is/ffldrs/pdfs/RegisteredOrganicInputMaterial2016.pdf.
1032	Chen, Ye, Jay J Cheng, and Kurt S Creamer. 2008. "Inhibition of Anaerobic Digestion Process: A
1033	Review." Bioresource Technology 99 (10): 4044–4064.
1034	Coombs, J. 1990. "The Present and Future of Anaerobic Digestion." In Anaerobic Digestion: A
1035	Waste Treatment Technology, edited by A Wheatley, 1–42. Critical Reports on Applied
1036	Chemistry 31.

1037	Davis, Brandon L. 2006. "An Economic Analysis of a Dairy Anaerobic Digestion (AD) System:
1038	Will Dairy Producers Invest in AD Technology to Reduce Potential Litigation Suits?" In .
1039	Orlando, FL. http://ageconsearch.umn.edu/bitstream/35305/1/sp06da04.pdf.
1040	Drennan, Margaret F., and Thomas D. DiStefano. 2010. "Characterization of the Curing Process
1041	from High-Solids Anaerobic Digestion." Bioresource Technology 101 (2): 537-44.
1042	doi:http://dx.doi.org/10.1016/j.biortech.2009.08.029.
1043	——. 2014. "High Solids Co-Digestion of Food and Landscape Waste and the Potential for
1044	Ammonia Toxicity." Waste Management 34 (7): 1289–98.
1045	doi:http://dx.doi.org/10.1016/j.wasman.2014.03.019.
1046	Dvorak, S.W. 2012. Method and apparatus for solids processing. US Patent Office 8,202,721,
1047	issued June 19, 2012. https://www.google.com/patents/US8202721.
1048	EGTOP. 2011. "Final Report on Fertilizers and Soil Conditioners." EGTOP/6/13. Brussels,
1049	Belgium: European Commission.
1050	http://ec.europa.eu/agriculture/organic/sites/orgfarming/files/docs/body/final_report_egtop
1051	_on_fertilizers_en.pdf.
1052	EU Commission. 2008. Organic Production and Labelling of Organic Products with Regard to
1053	Organic Production, Labelling and Control. http://eur-lex.europa.eu/legal-
1054	content/EN/TXT/PDF/?uri=CELEX:02008R0889-
1055	20140416&qid=1446510177884&from=EN.
1056	FAO/WHO Joint Standards Programme. 1999. Codex Alimentarius Guidelines for the Production,
1057	Processing, Labelling and Marketing of Organic Processed Foods. CAC/GL 32-1999.
1058	Rome, IT & Geneva, CH: FAO/WHO.
1059	ftp://ftp.fao.org/docrep/fao/005/Y2772e/Y2772e.pdf.
1060	Ferguson, J.R. 1990. Anaerobic digestion of fish wastes. US Patent Office 4,975,106, issued
1061	December 16, 1990. https://www.google.com/patents/US4975106.
1062	Fischer, JR, EL Iannotti, and DM Sievers. 1981. "Anaerobic Digestion of Manure from Swine Fed
1063	on Various Diets." Agricultural Wastes 3 (3): 201–214.
1064	Franke-Whittle, Ingrid H, and Heribert Insam. 2013. "Treatment Alternatives of Slaughterhouse
1065	Wastes, and Their Effect on the Inactivation of Different Pathogens: A Review." Critical
1066	Reviews in Microbiology 39 (2): 139–151.
1067	Frøseth, Randi Berland, Anne Kjersti Bakken, Marina Azzaroli Bleken, Hugh Riley, Reidun
1068	Pommeresche, Kristian Thorup-Kristensen, and Sissel Hansen. 2014. "Effects of Green
1069	Manure Herbage Management and Its Digestate from Biogas Production on Barley Yield,
1070	N Recovery, Soil Structure and Earthworm Populations." European Journal of Agronomy
1071	52: 90–102.
1072	Ganzoury, Mohamed A, and Nageh K Allam. 2015. "Impact of Nanotechnology on Biogas
1073	Production: A Mini-Review." Renewable and Sustainable Energy Reviews 50: 1392–1404.
1074	Gerardi, Michael H. 2003. The Microbiology of Anaerobic Digesters. New York: Wiley.
1075	Gerba, Charles P, and James E Smith. 2005. "Sources of Pathogenic Microorganisms and Their
1076	Fate during Land Application of Wastes." Journal of Environmental Quality 34 (1): 42–48.
1077	Goodhue, WP. 1897. Sewage Disposal Apparatus. Google Patents.
1078	https://www.google.com/patents/US584736.
1079	Govasmark, Espen, Jessica Stäb, Børge Holen, Douwe Hoornstra, Tommy Nesbakk, and Mirja
1080	Salkinoja-Salonen. 2011. "Chemical and Microbiological Hazards Associated with
1081	Recycling of Anaerobic Digested Residue Intended for Agricultural Use." Waste
1082	Management 31 (12): 2577–2583.

1083	Gregory, Regina. 2010. "China – Biogas." The EcoTipping Points Project.
1084	http://ecotippingpoints.org/our-stories/indepth/china-biogas.html.
1085	Guerrero, L, F Omil, R Mendez, and JM Lema. 1997. "Treatment of Saline Wastewaters from
1086	Fish Meal Factories in an Anaerobic Filter under Extreme Ammonia Concentrations."
1087	Bioresource Technology 61 (1): 69–78.
1088	Gutser, R., Th. Ebertseder, A. Weber, M. Schraml, and U. Schmidhalter. 2005. "Short-Term and
1089	Residual Availability of Nitrogen after Long-Term Application of Organic Fertilizers on
1090	Arable Land." Journal of Plant Nutrition and Soil Science 168 (4): 439–446.
1091	doi:10.1002/jpln.200520510.
1092	Hamilton, Douglas W. 2010. "Anaerobic Digestion of Animal Manures: Types of Digesters." Fact
1093	Sheet BAE-1750. Stillwater, OK: Oklahoma Cooperative Extension Service.
1094	He, Pin Jing. 2010. "Anaerobic Digestion: An Intriguing Long History in China." Waste
1095	<i>Management</i> 30 (4): 549–550.
1096	Higgins, Matthew J, Yen-Chih Chen, Douglas P Yarosz, Sudhir N Murthy, Nick A Maas, Dietmar
1097	Glindemann, and John T Novak. 2006. "Cycling of Volatile Organic Sulfur Compounds in
1098	Anaerobically Digested Biosolids and Its Implications for Odors." Water Environment
1099	<i>Research</i> 78 (3): 243–252.
1100	Hobson, PN. 1990. "The Treatment of Agricultural Wastes." In Anaerobic Digestion: A Waste
1101	Treatment Technology, edited by AD Wheatley, 93–138. London, UK: Elsevier.
1102	Hobson, PN, and AD Wheatley. 1993. Anaerobic Digestion: Modern Theory and Practice.
1103	London, UK and New York, NY: Elsevier.
1104	Holm-Nielsen, Jens Bo, Theodorita Al Seadi, and Piotr Oleskowicz-Popiel. 2009. "The Future of
1105	Anaerobic Digestion and Biogas Utilization." Bioresource Technology 100 (22): 5478-
1106	5484.
1107	IFOAM. 2014. IFOAM Norms. Bonn, Germany: IFOAM.
1108	Japan MAFF. 2000. Japanese Agricultural Standard for Organic Plants. Japanese Agricultural
1109	Standard. Vol. 59. http://www.maff.go.jp/e/jas/specific/pdf/833_2012-3.pdf.
1110	Joblin, Robert. 2016. "Petition to Establishe a Separate Classification for Anaerobic Digestate on
1111	the National List of Allowed and Prohibited Substances." Petition for Inclusion of
1112	Synthetic Substances on the National List of Allowed and Prohibited Substances. Cenergy
1113	USA: Little Rock, AR.
1114	https://www.ams.usda.gov/sites/default/files/media/Cenergy%20NOSB%20Petition%204-
1115	5-16.pdf.
1116	Kadish, Victor H. 1928. "Milorganite-A New Fertilizer Material." Industrial & Engineering
1117	<i>Chemistry</i> 20 (1): 9–10.
1118	Kangmin, Li, and Mae-Wan Ho. 2006. "Biogas China." Nottingham, UK: Institute of Science in
1119	Society. http://www.i-sis.org.uk/BiogasChina.php.
1120	Kearney, Theresa E, MJ Larkin, and PN Levett. 1993. "The Effect of Slurry Storage and
1121	Anaerobic Digestion on Survival of Pathogenic Bacteria." Journal of Applied Bacteriology
1122	74 (1): 86–93.
1123	Kupper, Thomas, Thomas D Bucheli, Rahel C Brändli, Didier Ortelli, and Patrick Edder. 2008.
1124	"Dissipation of Pesticides during Composting and Anaerobic Digestion of Source-
1125	Separated Organic Waste at Full-Scale Plants." Bioresource Technology 99 (17): 7988-
1126	7994.
1127	Larsen, Thomas, Jesper Luxhøi, Jakob Magid, Lars Stoumann Jensen, and Paul Henning Krogh.
1128	2007. "Properties of Anaerobically Digested and Composted Municipal Solid Waste

1129	Assessed by Linking Soil Mesofauna Dynamics and Nitrogen Modelling." Biology and
1130	Fertility of Soils 44 (1): 59–68.
1131	Loria, Esteban R, and John E Sawyer. 2005. "Extractable Soil Phosphorus and Inorganic Nitrogen
1132	Following Application of Raw and Anaerobically Digested Swine Manure." Agronomy
1133	Journal 97 (3): 879–885.
1134	Loria, Esteban R, John E Sawyer, Daniel W Barker, John P Lundvall, and Jeffery C Lorimor.
1135	2007. "Use of Anaerobically Digested Swine Manure as a Nitrogen Source in Corn
1136	Production." Agronomy Journal 99 (4): 1119–1129.
1137	Madamwar, Datta, Anami Patel, and Vikram Patel. 1991. "Effects of Various Surfactants on
1138	Anaerobic Digestion of Water Hyacinth-Cattle Dung." Bioresource Technology 37 (2):
1139	157–160.
1140	Madamwar, Datta, Anami Patel, Vikram Patel, and NV Shastri. 1992. "Effect of Mixture of
1141	Surfactants and Adsorbents on Anaerobic Digestion of Water Hyacinth-Cattle Dung."
1142	Applied Biochemistry and Biotechnology 36 (3): 163–169.
1143	Marcilhac, Cyril, Bruno Sialve, Anne-Marie Pourcher, Christine Ziebal, Nicolas Bernet, and
1144	Fabrice Béline. 2014. "Digestate Color and Light Intensity Affect Nutrient Removal and
1145	Competition Phenomena in a Microalgal-Bacterial Ecosystem." Water Research 64: 278-
1146	287.
1147	Massé, DI, F Croteau, and L Masse. 2007. "The Fate of Crop Nutrients during Digestion of Swine
1148	Manure in Psychrophilic Anaerobic Sequencing Batch Reactors." Bioresource Technology
1149	98 (15): 2819–2823.
1150	Mast, Benjamin, Andreas Lemmer, Hans Oechsner, Annett Reinhardt-Hanisch, Wilhelm Claupein,
1151	and Simone Graeff-Hönninger. 2014. "Methane Yield Potential of Novel Perennial Biogas
1152	Crops Influenced by Harvest Date." Industrial Crops and Products 58: 194–203.
1153	Mata-Alvarez, J., S. Macé, and P. Llabrés. 2000. "Anaerobic Digestion of Organic Solid Wastes.
1154	An Overview of Research Achievements and Perspectives." Bioresource Technology 74
1155	(1): 3–16. doi:http://dx.doi.org/10.1016/S0960-8524(00)00023-7.
1156	Maynaud, Geraldine, Anne-Marie Pourcher, Christine Ziebal, Anais Cuny, Céline Druilhe, Jean-
1157	Philippe Steyer, and Nathalie Wéry. 2016. "Persistence and Potential Viable but Non-
1158	Culturable State of Pathogenic Bacteria during Storage of Digestates from Agricultural
1159	Biogas Plants." Frontiers in Microbiology 7: 1469. doi:10.3389/fmicb.2016.01469.
1160	McCarty, GW. 1999. "Modes of Action of Nitrification Inhibitors." Biology and Fertility of Soils
1161	29 (1): 1–9.
1162	McCarty, PL. 2001. "The Development of Anaerobic Treatment and Its Future." Water Science
1163	and Technology 44 (8): 149–156.
1164	Mikesell, Mark D, and Stephen A Boyd. 1985. "Reductive Dechlorination of the Pesticides 2, 4-D,
1165	2, 4, 5-T, and Pentachlorophenol in Anaerobic Sludges." Journal of Environmental Quality
1166	14 (3): 337–340.
1167	Milorganite. 2004. "How Milorganite Is Made." Milwaukee, WI: MMSD.
1168	http://www.milorganite.com/-
1169	/media/Milorganite/Documents/collateral/04156_How_Milorganite_Is_Made.pdf.
1170	——. 2016. "Milorganite's History." http://www.milorganite.com/header-links/about-
1171	us/history.
1172	Miyamoto, Kazuhisa, ed. 1997. Renewable Biological Systems for Alternative Sustainable Energy
1173	Production. Vol. 128. FAO Agricultural Services Bulletin. Rome, IT: Food & Agriculture
1174	Organization. http://www.fao.org/docrep/w7241e/w7241e00.htm#Contents.

1175	MMSD. 2016. "Milwaukee Metropolitan Sewerage District Facilities."
1176	http://www.mmsd.com/about/facilities.
1177	Möller, Kurt. 2015. "Effects of Anaerobic Digestion on Soil Carbon and Nitrogen Turnover, N
1178	Emissions, and Soil Biological Activity. A Review." Agronomy for Sustainable
1179	Development 35 (3): 1021–1041.
1180	2016. "Assessment of Alternative Phosphorus Fertilizers for Organic Farming: Compost
1181	and Digestates from Urban Organic Wastes." Frick, Switzerland: FiBL.
1182	https://shop.fibl.org/fileadmin/documents/shop/1699-compost-and-digestates.pdf.
1183	Möller, Kurt, and Torsten Müller. 2012. "Effects of Anaerobic Digestion on Digestate Nutrient
1184	Availability and Crop Growth: A Review." Engineering in Life Sciences 12 (3): 242–257.
1185	doi:10.1002/elsc.201100085.
1186	Möller, Kurt, Walter Stinner, Arno Deuker, and Günter Leithold. 2008. "Effects of Different
1187	Manuring Systems with and without Biogas Digestion on Nitrogen Cycle and Crop Yield
1188	in Mixed Organic Dairy Farming Systems." Nutrient Cycling in Agroecosystems 82 (3):
1189	209–232.
1190	Moral, R, MD Perez-Murcia, A Perez-Espinosa, J Moreno-Caselles, C Paredes, and B Rufete.
1191	2008. "Salinity, Organic Content, Micronutrients and Heavy Metals in Pig Slurries from
1192	South-Eastern Spain." Waste Management 28 (2): 367–371.
1193	Mottet, Alexis, Frédéric Habouzit, and Jean Philippe Steyer. 2014. "Anaerobic Digestion of
1194	Marine Microalgae in Different Salinity Levels." <i>Bioresource Technology</i> 158: 300–306.
1195	Murphy, Suzannah, Michael T Gaffney, Seamus Fanning, and Catherine M Burgess. 2016.
1196	"Potential for Transfer of Escherichia Coli O157: H7, Listeria Monocytogenes and
1197	Salmonella Senftenberg from Contaminated Food Waste Derived Compost and Anaerobic
1198	Digestate Liquid to Lettuce Plants." Food Microbiology 59: 7–13.
1199	Nkoa, Roger. 2014. "Agricultural Benefits and Environmental Risks of Soil Fertilization with
1200	Anaerobic Digestates: A Review." Agronomy for Sustainable Development 34 (2): 473–
1201	492.
1202	NLM. 2016. "Toxnet." Washington, DC: National Library of Medicine. http://toxnet.nlm.nih.gov/.
1203	NOSB. 2012. "Formal Recommendation: Petitioned to Add Sulfuric Acid to §205.601." USDA
1204	NOSB.
1205	https://www.ams.usda.gov/sites/default/files/media/Sulfuric%20acid%20recommendation
1206	%202012.pdf.
1207	Olsen, John Elmerdahl, and Holger Errebo Larsen. 1987. "Bacterial Decimation Times in
1208	Anaerobic Digestions of Animal Slurries." <i>Biological Wastes</i> 21 (3): 153–168.
1209	Olsen, P, and I Thorup. 1984. "Neurotoxicity in Rats Dosed with Peppermint Oil and Pulegone."
1210	Archives of Toxicology Supplement 7: 408–409.
1211	Omil, Francisco, Ramón Méndez, and Juan M Lema. 1995. "Anaerobic Treatment of Saline
1212	Wastewaters under High Sulphide and Ammonia Content." Bioresource Technology 54
1213	(3): 269–278.
1214	OMRI. 2016. OMRI Products List. Eugene, OR: Organic Materials Review Institute.
1215	Parnes, Robert. 1990. Fertile Soil: A Grower's Guide to Organic and Inorganic Fertilizers. Davis,
1216	CA: AgAccess.
1217	Poggi-Varaldo, HM, J Trejo-Espino, G Fernandez-Villagomez, F Esparza-Garcia, S Caffarel-
1218	Mendez, and N Rinderknecht-Seijas. 1999. "Quality of Anaerobic Compost from Paper
1219	Mill and Municipal Solid Wastes for Soil Amendment." Water Science and Technology 40
1220	(11–12): 179–186.

1221	Prays, Nadia, and Martin Kaupenjohann. 2016. "Initial Effects of Differently Treated Biogas
1222	Residues from Municipal and Industrial Wastes on Spring Barley Yield Formation." <i>PloS</i>
1223	One 11 (4): e0154232. doi:10.1371/journal.pone.0154232.
1224	Rajpal, Ankur, Renu Bhargava, AK Chopra, and Tarun Kumar. 2014. "Vermistabilization and
1225	Nutrient Enhancement of Anaerobic Digestate through Earthworm Species Perionyx
1226	Excavatus and Perionyx Sansibaricus." Journal of Material Cycles and Waste
1227	Management 16 (2): 219–226.
1228	Resende, Juliana Alves, Vânia Lúcia Silva, Tamara Lopes Rocha de Oliveira, Samuel de Oliveira
1229	Fortunato, Jailton da Costa Carneiro, Marcelo Henrique Otenio, and Cláudio Galuppo
1230	Diniz. 2014. "Prevalence and Persistence of Potentially Pathogenic and Antibiotic
1231	Resistant Bacteria during Anaerobic Digestion Treatment of Cattle Manure." Bioresource
1232	<i>Technology</i> 153: 284–291.
1233	Rowe, Donald R, and Isam Mohammed Abdel-Magid. 1995. Handbook of Wastewater
1234	Reclamation and Reuse. Boca Raton, FL: CRC Press.
1235	Sahlström, Leena. 2003. "A Review of Survival of Pathogenic Bacteria in Organic Waste Used in
1236	Biogas Plants." <i>Bioresource Technology</i> 87 (2): 161–166.
1237	Sakar, Suleyman, Kaan Yetilmezsoy, and Emel Kocak. 2009. "Anaerobic Digestion Technology
1238	in Poultry and Livestock Waste Treatment—a Literature Review." Waste Management &
1239	<i>Research</i> 27 (1): 3–18.
1240	Scallan, Elaine, Robert M Hoekstra, Frederick J Angulo, Robert V Tauxe, Marc-Alain
1241	Widdowson, Sharon L Roy, Jeffery L Jones, and Patricia M Griffin. 2011. "Foodborne
1242	Illness Acquired in the United States—major Pathogens." <i>Emerg Infect Dis</i> 17 (1).
1243	Shah, Fayyaz Ali, Qaisar Mahmood, Naim Rashid, Arshid Pervez, Iftikhar Ahmad Raja, and
1244	Mohammad Maroof Shah. 2015. "Co-Digestion, Pretreatment and Digester Design for
1245	Enhanced Methanogenesis." <i>Renewable and Sustainable Energy Reviews</i> 42: 627–642.
1246	Song, Z, CJ Williams, and RGJ Edyvean. 2001. "Coagulation and Anaerobic Digestion of
1247	Tannery Wastewater." <i>Process Safety and Environmental Protection</i> 79 (1): 23–28.
1248	Speece, Richard E. 1983. "Anaerobic Biotechnology for Industrial Wastewater Treatment."
1249	Environmental Science & Technology 17 (9): 416A–427A.
1250	Stoknes, K, F Scholwin, W Krzesiński, E Wojciechowska, and A Jasińska. 2016. "Efficiency of a
1251	Novel 'Food to Waste to Food' System Including Anaerobic Digestion of Food Waste and
1252	Cultivation of Vegetables on Digestate in a Bubble-Insulated Greenhouse." <i>Waste</i>
1253	<i>Management</i> 56: 466–476. Svoboda, Nikolai, Friedhelm Taube, Christof Klu\s s, Babette Wienforth, Henning Kage, Susanne
1254 1255	Ohl, Eberhard Hartung, and Antje Herrmann. 2013. "Crop Production for Biogas and
1255	Water protection—A Trade-Off?" <i>Agriculture, Ecosystems & Environment</i> 177: 36–47.
1250	Svoboda, Nikolai, Friedhelm Taube, Christof Klu\s s, Babette Wienforth, Klaus Sieling, Mario
1257	Hasler, Henning Kage, Susanne Ohl, Eberhard Hartung, and Antje Herrmann. 2015.
1258	"Ecological Efficiency of Maize-Based Cropping Systems for Biogas Production."
1259	BioEnergy Research 8 (4): 1621–1635.
1260	Tafdrup, Sòren. 1995. "Viable Energy Production and Waste Recycling from Anaerobic Digestion
1262	of Manure and Other Biomass Materials." <i>Biomass and Bioenergy</i> 9 (1): 303–314.
1262	Talbot, AN. 1900. "Recent Progress in Sewage Purification." <i>Journal of the Western Society of</i>
1265	Engineers 5 (6): 543–65.
1265	Tambone, Fulvia, Barbara Scaglia, Giuliana D'Imporzano, Andrea Schievano, Valentina Orzi,
1266	Silvia Salati, and Fabrizio Adani. 2010. "Assessing Amendment and Fertilizing Properties

1267 1268	of Digestates from Anaerobic Digestion through a Comparative Study with Digested Sludge and Compost." <i>Chemosphere</i> 81 (5): 577–583.
1268	Tampio, Elina, Sanna Marttinen, and Jukka Rintala. 2016. "Liquid Fertilizer Products from
1209	Anaerobic Digestion of Food Waste: Mass, Nutrient and Energy Balance of Four Digestate
1270	Liquid Treatment Systems." Journal of Cleaner Production 125: 22–32.
1271	Torello, William A. 2012. "Sulfuric Acid—Technical Grade." Petition for Inclusion of Synthetic
1272	Substances on the National List of Allowed and Prohibited Substances. BioStar Energy,
1275	LLC: Portsmouth, NH.
1274	https://www.ams.usda.gov/sites/default/files/media/Sulfuric%20acid%202012.pdf.
1275	US EPA. 2003. "Control of Pathogens and Vector Attraction in Sewage Sludge." Environmental
1270	Regulations and Technology. Cincinnati, OH: US Environmental Protection Agency,
1277	National Risk Management Laboratory.
1278	——. 2004. "Risk Assessment Evaluation for Concentrated Animal Feeding Operations." Risk
1279	Assessment EPA/600/R-04/042. Cincinnati, OH: US Environmental Protection Agency
1280	National Risk Management Research Laboratory.
1281	———. 2011. "Recovering Value from Waste: Anaerobic Digester System Basics." EPA/600/R-
1282	15/304. Washington, DC: US Environmental Protection Agency AgStar Pogram.
1283	https://www.epa.gov/sites/production/files/2014-
1285	12/documents/recovering_value_from_waste.pdf.
1286	2015. "Anaerobic Digestion and Its Applications." EPA/600/R-15/304. Washington, DC:
1287	US Environmental Protection Agency.
1288	https://nepis.epa.gov/Exe/ZyPDF.cgi/P100NPK0.PDF?Dockey=P100NPK0.PDF.
1289	———. 2016a. "National Pollutant Discharge Elimination System (NPDES): Animal Feeding
1290	Operations (AFOs)." June 27. https://www.epa.gov/npdes/animal-feeding-operations-afos.
1291	———. 2016b. "Examples of Equivalent Processes: PFRF and PSRP." August 18.
1292	https://www.epa.gov/biosolids/examples-equivalent-processes-pfrp-and-psrp.
1293	USDA / NRCS. 2016. National Organic Farming Handbook. 190–612–H. Washington, DC: US
1294	Department of Agriculture, Natural Resouces Conservation Service.
1295	http://directives.sc.egov.usda.gov/OpenNonWebContent.aspx?content=39107.wba.
1296	Vaughn, Jacqueline. 2009. Waste Management: A Reference Handbook. Santa Barbara, CA: Abc-
1297	clio.
1298	Walker, Lee, Wipa Charles, and Ralf Cord-Ruwisch. 2009. "Comparison of Static, in-Vessel
1299	Composting of MSW with Thermophilic Anaerobic Digestion and Combinations of the
1300	Two Processes." Bioresource Technology 100 (16): 3799–3807.
1301	Walsh, John J, Davey L Jones, Gareth Edwards-Jones, and A Prysor Williams. 2012. "Replacing
1302	Inorganic Fertilizer with Anaerobic Digestate May Maintain Agricultural Productivity at
1303	Less Environmental Cost." Journal of Plant Nutrition and Soil Science 175 (6): 840-845.
1304	Walsh, John J, Johannes Rousk, Gareth Edwards-Jones, Davey L Jones, and A Prysor Williams.
1305	2012. "Fungal and Bacterial Growth Following the Application of Slurry and Anaerobic
1306	Digestate of Livestock Manure to Temperate Pasture Soils." Biology and Fertility of Soils
1307	48 (8): 889–897.
1308	Ward, Alastair J, Phil J Hobbs, Peter J Holliman, and David L Jones. 2008. "Optimisation of the
1309	Anaerobic Digestion of Agricultural Resources." Bioresource Technology 99 (17): 7928–
1310	7940.
1311	Weiske, A, G Benckiser, T Herbert, and J Ottow. 2001. "Influence of the Nitrification Inhibitor 3,
1312	4-Dimethylpyrazole Phosphate (DMPP) in Comparison to Dicyandiamide (DCD) on
1313	Nitrous Oxide Emissions, Carbon Dioxide Fluxes and Methane Oxidation during 3 Years

1314	of Repeated Application in Field Experiments." Biology and Fertility of Soils 34 (2): 109-
1315	117.
1316	Wolters, Birgit, Martina Kyselková, Ellen Krögerrecklenfort, Robert Kreuzig, and Kornelia
1317	Smalla. 2015. "Transferable Antibiotic Resistance Plasmids from Biogas Plant Digestates
1318	Often Belong to the IncP-1ɛ Subgroup." Frontiers in Microbiology 5: 765.
1319	WSDA. 2016. "Brand Name Material List." Olympia, WA: Washington State Department of
1320	Agriculture. http://agr.wa.gov/Fp/Pubs/docs/BNML_By_Product_Name.pdf.
1321	Yang, J, and RE Speece. 1985. "Effects of Engineering Controls on Methane Fermentation
1322	Toxicity Response." Journal (Water Pollution Control Federation), 1134–1141.
1323	Zemba, Stephen G, James J Binder, Michael R Ames, and Richard R Lester. 2010. "A Risk
1324	Assessment Framework for Evaluating Health Risks From New and Emerging Waste
1325	Management Technologies." In 18th Annual North American Waste-to-Energy
1326	Conference, 23–32. Orlando, FL: American Society of Mechanical Engineers.
1327	Zhang, Lei, Yong-Woo Lee, and Deokjin Jahng. 2011. "Anaerobic Co-Digestion of Food Waste
1328	and Piggery Wastewater: Focusing on the Role of Trace Elements." Bioresource
1329	Technology 102 (8): 5048–5059.