United States Department of Agriculture Agricultural Marketing Service | National Organic Program Document Cover Sheet https://www.ams.usda.gov/rules-regulations/organic/petitioned-substances

Document Type:

□ National List Petition or Petition Update

A petition is a request to amend the USDA National Organic Program's National List of Allowed and Prohibited Substances (National List).

Any person may submit a petition to have a substance evaluated by the National Organic Standards Board (7 CFR 205.607(a)).

Guidelines for submitting a petition are available in the NOP Handbook as NOP 3011, National List Petition Guidelines.

Petitions are posted for the public on the NOP website for Petitioned Substances.

⊠ Technical Report

A technical report is developed in response to a petition to amend the National List. Reports are also developed to assist in the review of substances that are already on the National List.

Technical reports are completed by third-party contractors and are available to the public on the NOP website for Petitioned Substances.

Contractor names and dates completed are available in the report.

)zone Handling/Processing

1		Identificati	on
2	Chemical Names:	9	Trade Names: ¹
3	Ozone	10	Ozonator; Ozone Systems; Sorbal; Villa 3000
4		11	
5	Other Names:	12	CAS Numbers:
6	2-Trioxiden-2-ium-1-ide; Triatomic oxygen;	13	10028-15-6
7	Trioxygen; Trioxygene	14	
8		15	Other Codes:
		16	EINECS: 233-069-2

17 18 19

21

22

This full scope technical report provides updated and new information to the National Organic Standards Board (NOSB) to support the sunset review of ozone, listed at 7 CFR 205.605(b)(21). This report focuses on the uses and 20 applications of ozone in organic processing and handling.

Summary

23 The only review to include ozone on the National List was conducted in 1995 (NOP, 1995). The NOSB

24 recommended listing the substance without annotation in 1995 (NOSB, 1995a). Ozone was included on the National

25 List of Allowed and Prohibited Substances (hereafter referred to as the "National List") with the first publication of

26 the National Organic Program (NOP) Final Rule (65 FR 80548, December 21, 2000). The NOSB has since

continued to recommend its renewal in 2007, 2010, 2017, and 2020 (NOSB, 2007, 2010, 2015, 2020a). 27

28 Representatives from fruit producers and organic trade or business organizations expressed support for the continued 29

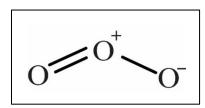
listing of ozone, prior to the Fall 2020 NOSB meeting (NOSB, 2020b). They noted that ozone was very effective as 30 a sanitizer/disinfectant and pest control agent in packing houses, helping producers meet requirements of the Food 31 Safety Modernization Act.

32

37

38

33 Ozone is listed at § 205.605(b)(21) as a nonagricultural synthetic substance and may be used as ingredients in or on 34 processed products labeled as "organic" or "made with organic (specified ingredients or food group(s))" without any 35 annotation that limits its source or use. 36


Characterization

39 **Composition of the Substance:**

Ozone is a molecule composed of three oxygen atoms (O_3) (National Center for Biotechnology Information, 2024). 40

41 It is often represented with the central oxygen atom connected by a double bond with one oxygen atom and

- 42 connected by a single bond with another oxygen atom (see Figure 1). However, in nature, the electrons are shared 43 equally between the two bonds.
- 44

45 46

51

52

53

Figure 1: Chemical structure of O₃

47 48 Source or Origin of the Substance:

49 Ozone occurs naturally, mostly in the upper atmosphere. Naturally occurring ozone is often the product of 50 ultraviolet radiation on atmospheric oxygen (O₂) (National Center for Biotechnology Information, 2024).

- Producers generate most ozone by applying a low-current electrical discharge ("corona discharge") to atmospheric oxygen (Foley & Kirschner, 2022).
- Increasingly, producers generate ozone through the electrolysis of water (Okada & Naya, 2012).
- 54 Producers can also generate ozone photochemically by exposing oxygen in air or water to ultraviolet light 55 (UV) (Horvath et al., 1985; Wojtowicz, 2005).

¹ Trade names are for equipment used to generate ozone on site.

- 57 The UV method produces relatively low ozone concentrations compared to corona discharge (Wojtowicz, 2005).
- 58 However, it may be suitable for producers aiming to generate small amounts of ozone in combination with
- 59 disinfection effects provided by ultraviolet light (Foley & Kirschner, 2022). We found references to an older method
- 60 for synthesizing ozone by feeding liquid oxygen between two electrodes separated by an inert gas (such as helium),
- 61 that forms a barrier that ionizes to form plasma (Grosse & Stokes, 1967; Stokes & Streng, 1965).
- 62 64

65 66

67

- 63 Ozonation occurs in several steps (see Figure 2) (Tapp & Rice, 2012).
 - Most low-current electrical discharge systems used in food processing facilities first concentrate oxygen 1.
 - from atmospheric gases to about 93% pure O₂.
 - 2. The oxygen then passes through the corona discharge ozone generator.
 - 3. The ozone generation process is monitored and adjusted to maintain concentration.
- 68 4. Producers may either apply the ozone directly to food, or inject it into wash water, depending on the food 69 and application. When applied directly, the generator releases ozone as a gas into the storage chamber or 70 directly on the product. In the latter case, producers dissolve ozone into water used to wash food.
 - 5. Producers can off-gas ozone either directly or treat it to accelerate decomposition into O_2 before releasing it into ambient air.
- 71 72 73

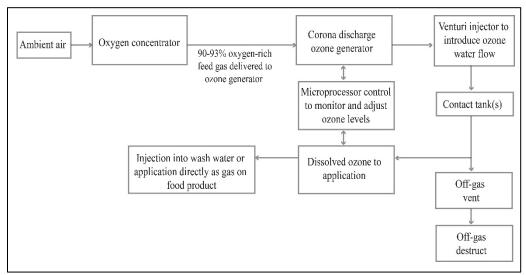


Figure 2: Flow diagram of the generation, application, and control of ozone in a food processing plant. Adapted from Tapp & Rice (2012)

77 78 Nuclear reactors also generate large quantities of concentrated ozone. Ozone is a by-product of the irradiation of 79 ambient oxygen with combined beta, gamma, and neutron radiation in the course of operation of the reactors 80 (Horvath et al., 1985). However, a practical way of separating ozone from radioactive material has prevented 81 commercialization of this source (Wojtowicz, 2005). Even if the operators of nuclear reactors overcome such 82 technical barriers, nucleo-chemical ozone sources still present additional hazards if used to handle and process food

- 83 (Guzel-Seydim et al., 2004).
- 84

74 75 76

85 **Properties of the Substance:**

86 Ozone gas ranges from colorless to pale blue in appearance (see Table 1). In gaseous form, it is unstable and highly reactive. Ozone is heavier than air and rapidly decomposes into atmospheric oxygen.

- 87
- 88 89 90

)	Table 1: Physical and chemical properties of ozone (Foley & Kirschner, 2022; National Center for Biotechnology Information,
)	2024; Wojtowicz, 2005)

Property	Value
Physical state and	Gas at 0 °C and 1 atm
appearance	
Odor	Pungent
Color	Colorless to bluish in gas form; dark blue in liquid form; blue-black crystals in solid form
Molecular weight	47.998 g/mol
Specific gravity	1.61 at 21.1 °C and 1 atm (Compressed Gas Association, 1999)
Solubility	1.06 g L ⁻¹ in water at pH 3.5 at 0 °C and 1 atm
Boiling point	-112 °C
Melting point -192 to -193 °C	

Property	Value
Critical temperature	-12.1 °C
Vapor pressure	41,257 mm Hg at -12 °C
Stability	Unstable gas that rapidly decomposes to O ₂ at 0 °C and 1 atm
Reactivity	Reacts with virtually every element with the exceptions of most noble metals, fluorine, and
-	inert gases

92 Temperature, pressure, and ionic strength of a solution all influence the solubility of ozone (Wojtowicz, 2005).

93 Solubility is increased by pressure and decreased by temperature (Wojtowicz, 2005). Ozone is pH neutral, but is

94 more stable in solutions with low (acidic) pH (Galdeano et al., 2018). Specific gravities of gases are relative to air, 95 with air having a value of 1.0 at standard temperature and pressure (Gordon, 2024). Thus, ozone is heavier than air.

95 96

97 Ozone is a strong oxidizing agent with an oxidation potential of 2.07 eV (Foley & Kirschner, 2022). Only a few

other oxidizing agents [such as fluorine (F₂), the hydroxyl radical (OH), and nascent or monoatomic oxygen (O)]

99 have a greater oxidation potential (Foley & Kirschner, 2022). Oxygen and the hydroxyl radical are both produced as

100 decomposition products of ozone in aqueous solution (Dubey et al., 2022; Khadre et al., 2001). While ozone has a

101 distinct pungent odor, it has no flavor and leaves no taste in ozonated water (Wojtowicz, 2005).

102

103 Specific Uses of the Substance:

104 Organic processors and handlers report that ozone is widely used as a sanitizer and to clean equipment (CCOF,

105 2020; Organic Trade Association, 2020). Organic fresh produce handlers use it on food contact surfaces, in direct

106 food contact, as an ethylene scavenger, and to control insects (Organic Produce Wholesalers Coalition, 2020).

107 Ozone is also used to sanitize barrels used to make organic wine (CCOF, 2020). One organic handler cited the Food

108 Safety Modernization Act (Public Law 111-353, January 4, 2011) as creating the necessity for effective sanitizers in

fresh fruit (Austin, 2020). While there are other options available, handlers may rotate different sanitizers as a

110 strategy to prevent pathogen resistance (Austin, 2020). Specific examples include aqueous ozone to sanitize organic

cherries prior to packing and gaseous ozone to prevent post-harvest diseases in bananas (Organic Produce
 Wholesalers Coalition, 2020).

112 113

114 The primary use of ozone globally is as a water treatment (Wojtowicz, 2005). In this capacity, ozone oxidizes

organic and inorganic compounds, improving water quality when used as a broad-scope disinfectant. In food

production, handlers also apply ozone directly to food as an antimicrobial treatment (O'Donnell et al., 2012). Consequentially, ozone is also a preservative (see *Evaluation Question #3*, below).

117

Ozone can reduce decay and extend the storage life of a variety of foods (see <u>Table 2</u>, below). Processors can apply ozone both as a wash water disinfectant that reduces the populations of spoilage organisms and as a gas discharged in controlled- or modified-atmosphere refrigeration chambers (Sarron et al., 2021; B. Tiwari & Muthukumarappan, 2012). Sarron et al. (2021) found that most studies of lettuce and carrots involved treatment with ozonated wash water, while most studies of tomatoes involved treatment with gaseous ozone. Ozone gas is desirable as a non-thermal, dry antimicrobial for food products that need to avoid heat and moisture to preserve quality (Afsah-Hejri et the storage).

125 al., 2020; Gyawali et al., 2024). Researchers identified that the most studied fresh vegetables treated with ozone are

- 126 lettuce, carrots, and tomatoes (Sarron et al., 2021; B. Tiwari & Muthukumarappan, 2012).
- 127

Ozone is also used as an alternative to sulfiting agents to make no-sulfite-added wines (Mostashari et al., 2022). A
 common use is to sanitize oak barrels between vintages (Stadler & Fischer, 2020). It can also be used for post-

130 harvest treatment of the grapes to inactivate undesirable yeasts and microorganisms that are antagonistic to yeast

- 131 fermentation and to sanitize clean-in-place systems (Mostashari et al., 2022).
- 132 133

Table 2: Food and beverages commonly treated with ozone

Food	Effect of ozone on pathogens and food products	References
Carrots	Ozonated wash water effectively extends carrot storage life.	(Sarron et al., 2021; N.
		Singh et al., 2002)
Dried fruit	Fumigation with ozone inhibits mold, controls insects, and extends the storage	(Boopathy et al., 2022;
	life of dates, figs, and other dried fruits.	Prabha et al., 2015)
Fresh fruits	The storage life of apples and oranges is prolonged by the degradation of	(Prabha et al., 2015; B.
and	ethylene by ozone in a controlled or modified atmosphere.	Tiwari &
vegetables		Muthukumarappan, 2012)
Fruit juices	Ozone can achieve a 5-log reduction of E. coli, S. spp, and L. monocytogens in	(Pandiselvam et al., 2019)
	apple, tomato, peach, orange, and other juices.	
Grains	Ozone controls insects and mycotoxin-producing molds in stored corn, wheat,	(Jian et al., 2013; B. K.
	soybeans, flaxseed, and other grains and oilseeds.	Tiwari et al., 2010)
Lettuce	Ozonated water extends the shelf life of fresh-cut lettuce.	(Beltrán et al., 2005)

Food	Effect of ozone on pathogens and food products	References
Milk and	Ozone gas is used to sterilize clean-in-place dairy equipment and as an	(Pandiselvam et al., 2019)
dairy	atmospheric treatment in cheese storage/aging rooms to prevent unwanted molds.	
products		
Peanuts	Ozone inhibits <i>A. niger</i> and reduces aflatoxin and other mycotoxins in peanuts.	(de Alencar et al., 2012;
and tree	Ozone gas is a dry processing technique also effective in decontaminating	Gyawali et al., 2024)
nuts	almonds, Brazil nuts, and pistachios.	•
Poultry	Ozone is used to treat poultry processing chill water.	(Pohlman, 2012)
Beef	Ozone spray can decontaminate pathogenic bacteria on beef carcasses; ozone gas	(Pohlman, 2012)
	in modified atmosphere refrigeration inhibits <i>Clostridium perfringens</i> .	
Dried	Fumigation with ozone caused 100% mortality of insects in coriander and	(Boopathy et al., 2022)
spices	turmeric.	
Tomatoes	Storage life is extended in modified atmosphere chambers with elevated levels of	(Sarron et al., 2021)
	ozone gas.	
Wine	Ozone can be used as an alternative to sulfites as a sanitizer and antimicrobial in	(Mostashari et al., 2022;
	oak barrels, as a post-harvest treatment to inactivate undesirable yeasts and other	Stadler & Fischer, 2020)
	microorganisms, and to sanitize equipment.	

Approved Legal Uses of the Substance: 135

136 Food manufacturers use ozone as an antimicrobial and pest control agent. Therefore, the relevant legal uses of this 137 substance are regulated by the FDA and EPA (US EPA, 2021; US FDA, 2023).

138 139 EPA

140 Pesticidal devices such as ozone generators do not have to be registered with the EPA, but they are still subject to

the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) (US EPA, 2021). Manufacturers of ozone 141

142 generating equipment are required to register with EPA and report to the agency the names and addresses of the

143 establishments that install such devices (40 CFR 152.500; 41 FR 51065, November 19, 1976).

144

145 Ozone located in the lowest boundary of the stratosphere, or ground-level ozone, is classified as a pollutant by the 146 U.S. Environmental Protection Agency (US EPA) under the Clean Air Act.

147

151

152

153

154

148 FDA

149 Ozone is Generally Recognized as Safe (GRAS) by the FDA without limitations other than current Good 150 Manufacturing Practices. The FDA notes its use as an additive in contact with food, including:

- meat and poultry [21 CFR 173.368(d)] •
- raw agricultural commodities [21 CFR 173.368(e)] •
- bottled water (21 CFR 184.1563) •

155 The FDA lists ozone as an antimicrobial agent that processors may use in contact with food, including meat and 156 poultry [21 CFR 173.368(d)], unless such use is precluded by standards of identity established by the USDA's Food Safety Inspection Services (FSIS) (9 CFR 319 or 9 CFR 321, subpart P). 157

158

165

166

169

171

159 When producers use ozone on raw agricultural commodities such as fruit, its use is limited as an antimicrobial agent 160 provided for under the Federal Food, Drug, and Cosmetic Act [21 U.S.C. 321(q)(1)(B)(i)]. However, producers

- cannot use ozone [21 CFR 173.368(d)]: 161 162
 - in the field [21 USC 321(q)(1)(B)(i)(I)], •
- 163 in a treatment facility that changes the status of the produce from a raw agricultural commodity to a • 164 processed one [21 U.S.C 321(q)(1)(B)(i)(II)], or
 - during transportation from the field to the treatment or processing facility [21 U.S.C 321(q)(1)(B)(i)(III)]. •

167 Bottled water treated with ozone must meet the microbiological, physical, chemical, and radiological standards 168 established by the FDA prior to its treatment (21 CFR 184.1563; 165.110).

170 The FDA states the following regarding the maximum acceptable level:

172	Ozone is a toxic gas with no known useful medical application in specific,
173	adjunctive, or preventive therapy. In order for ozone to be effective as a
174	germicide, it must be present in a concentration far greater than that which can
175	be safely tolerated by man and animals [21 CFR 801.415(a)].
176	

Ozone

177 Food safety regulations related to meat, milk, eggs, dairy products, juices, and other foods that pose a risk of food-178 borne pathogens require pathogens of human health concern to be reduced by 99.999% or 10^5 , commonly referred to 179 as a 5-log reduction (US FDA, 2007; US FSIS, 2021). After a review of numerous scientific studies, researchers 180 determined that ozone use consistently resulted in the industry standard of a 5-log reduction in pathogens (Prabha et 181 al., 2015). The FDA states that the Hazard Analysis and Critical Control Point (HACCP) Plan requires juice 182 manufacturers to monitor and validate that ozone and other non-thermal methods meet the 5-log standard 183 (21 CFR 120.25). 184 185 Standard of identity for ozone under FDA: The FDA describes the standard of identity for ozone as follows (21 CFR 173.368): 186 187 188 Ozone (CAS Reg. No. 10028-15-6) may be safely used in the treatment, storage, 189 and processing of foods, including meat and poultry (unless such use is precluded 190 by standards of identity in 9 CFR part 319), in accordance with the following 191 prescribed conditions: 192 193 (a) The additive is an unstable, colorless gas with a pungent, 194 characteristic odor, which occurs freely in nature. It is produced 195 commercially by passing electrical discharges or ionizing radiation 196 through air or oxygen. 197 198 (b) The additive is used as an antimicrobial agent as defined in 199 \$170.3(o)(2) of this chapter. 200 201 (c) The additive meets the specifications for ozone in the Food 202 Chemicals Codex, 7th ed. (2010), pp. 754-755, which is incorporated by 203 reference. ... 204 205 (d) The additive is used in contact with food, including meat and poultry 206 (unless such use is precluded by standards of identity in 9 CFR part 319 207 or 9 CFR part 381, subpart P), in the gaseous or aqueous phase in 208 accordance with current industry standards of good manufacturing 209 practice. 210 (e) When used on raw agricultural commodities, the use is consistent 211 with section 201(q)(1)(B)(i) of the Federal Food, Drug, and Cosmetic 212 Act (the act) and not applied for use under section 201(q)(1)(B)(i)(I), 213 214 (q)(1)(B)(i)(II), or (q)(1)(B)(i)(III) of the act. 215 216 **GRAS** affirmation for ozone under FDA: 217 The FDA states that ozone is GRAS as an antimicrobial agent (21 CFR 173.368 and 21 CFR 184.1563) when used 218 in accordance with good manufacturing or feeding practices. 219 220 Specifications for ozone in the Food Chemicals Codex: 221 The 14th edition of the *Food Chemicals Codex* (U.S. Pharmacopeia, 2024) specifies the following for ozone: 222 223 **Description:** Ozone occurs as an unstable, colorless gas. It is produced *in situ* 224 from oxygen either by ultraviolet irradiation of air or by passing a high-voltage 225 discharge through air. It is a potent oxidizing agent that decomposes at ambient 226 temperature to molecular oxygen. 227 228 Identification: Laboratory procedure uses sodium hexametaphosphate, 229 ammonium chloride, and ammonium hydroxide as reagents. A sample of 230 ozonated water is compared to a blank water sample that has not been ozonated. 231 The assay uses an indigo stock solution, phosphoric acid, monobasic sodium 232 phosphate, and malonic acid as reagents. 233 234 Assay: Concentrations in ozonated water of between 0.01 and 0.5 mg/L of O₃. 235 Arsenic (as As): Not established. 236 Chloride: Not established.

240

Heavy Metals (as Pb): Not established. Nonvolatile Residue: Not established.

- Sulfur Compounds: Not established.
- However, the FDA incorporates the standard of identity for ozone used by Food Chemicals Code 7th Edition 241 [21 CFR 173.368(c)].
- 242 243

244 Action of the Substance: 245

246 Ozone as an oxidizing agent

Ozone is a strong oxidizing agent. Its potential oxidizing capacity makes ozone a powerful antimicrobial substance 247 (Guzel-Seydim et al., 2004). Oxidizing agents typically contain electronegative atoms (such as oxygen) that strongly 248 249 attract electrons from other molecules. Oxidation damage is caused by oxidizing agents that chemically react with 250 biological components, disrupting their normal function.

251

252 More specifically, microorganisms are rapidly inactivated by a combination of reactions with intracellular enzymes,

- 253 nucleic materials, and components of their enveloping protein layer (e.g. spore coats, viral capsids, or cell
- 254 envelopes) (Khadre et al., 2001). Microbial inactivation by ozone is a complex process (Greene et al., 2012). Ozone 255 disintegrates the cell wall and causes it to rupture (lysis) under the high oxidation potential of ozone (Aslam et al.,
- 256 2020; Greene et al., 2012). Once exposed, the cell-content constituents (such as enzymes and nucleic acids) are
- deactivated (Greene et al., 2012; Khadre et al., 2001). 257
- 258

259 Ozone may also interfere with respiratory function in some microorganisms (Khadre et al., 2001). Researchers think

that spores exposed to ozone are disrupted and degraded, exposing the core and cortex to further action by the ozone 260 261 (Aslam et al., 2020; Khadre et al., 2001). Ozone inactivates viruses by what appears to be a similar mode of action

262 of removing the viral outer coat (Khadre et al., 2001). Another hypothesis is that ozone damages viral RNA (Khadre

263 et al., 2001). Protozoan eggs (oocytes) are also susceptible to the effects of ozone (Guzel-Seydim et al., 2004).

264

Synergism with essential oils 265

266 Essential oils can work synergistically with ozone, achieving greater pathogen reduction for products that are not

267 appropriate for thermal processing methods such as carrots, lettuce, and other leafy greens (Dev Kumar & Ravishankar, 2019; Floare et al., 2023; N. Singh et al., 2002).

- 268
- 269
- Interaction with ethylene 270

271 Ozone's interaction with the ripening agent ethylene is controversial and inconsistent (Prabha et al., 2015; Tokala et

272 al., 2018). In some studies, researchers demonstrated that ethylene production increases when ozone is introduced, a

phenomenon believed to be related to increased oxidative stress (Forney et al., 2003). In another study, researchers 273

274 discovered that ethylene levels decreased in separate storage chambers containing table grapes and peaches,

- 275 delaying degradation caused by continued ripening (Palou et al., 2002).
- 276

277 **Combinations of the Substance:**

278 Processors do not typically combine ozone generated on-site for antimicrobial treatment with any substance other

- 279 than water, but research indicates that it may be used in conjunction with ultraviolet light, ultrasound, or cold plasma
- 280 as physical methods to increase efficacy (Fan & Song, 2020; O'Donnell et al., 2012). Ozone may also be used in 281 combination with essential oils that have antioxidant properties and antimicrobial activity (Floare et al., 2023; N.
- 282 Singh et al., 2002).
- 283

284 Combinations of ozone with UV light or hydrogen peroxide (H_2O_2) result in advanced oxidation processes $(AOPs)^2$

285 that are effective against the most resistant organisms (Khadre et al., 2001). However, processors generally do not 286 use AOP techniques for direct food contact. Processors prefer to use these methods for wastewater treatment and 287 equipment sanitizing because of their non-selective reactions (Greene et al., 2012). Direct food application of AOPs 288 to reduce pathogens and maintain food quality remains a challenge for researchers (Fan & Song, 2020).

289

Ozone generation by corona discharge may produce other incidental gases, such as nitrogen oxides (NOx) (Foley & 290 Kirschner, 2022; Horvath et al., 1985; Tapp & Rice, 2012). These other gases are considered air pollutants found in

- 291 292 conjunction with ozone (US EPA, 2024a).
- 293

² Advanced oxidation processes (AOPs) generate highly reactive intermediates—particularly the hydroxyl radical (OH⁻)—in water to treat recalcitrant organic compounds (Khadre et al., 2001).

Status

296 Historic Use:

297 The word "ozone" is derived from the ancient Greeks' description of the odor produced by lightning flash (Foley & 298 Kirschner, 2022). Ozone was first described by Dutch scientist Martin van Marum as a phenomenon produced by 299 passing electricity through air in 1786, but was not identified as a chemical substance until 1840 by German-Swiss 300 chemist Christian Friedrich Schoenbein (Horvath et al., 1985). Nikola Tesla received one of the first patents for an 301 ozone generator (Tesla, 1896).

302

303 Outside the U.S., ozone has been used extensively for water purification and other sanitizer and fumigant functions 304 since the early 1900s (EPRI, 2001). The first practical use of ozone as a disinfectant began in 1903 as a treatment for 305 drinking water systems in Europe (Wojtowicz, 2005). Between 1903 and 1906, Nice, France installed an ozone 306 treatment system sufficient to disinfect the entire city water supply (Rice et al., 1981; Rideal, 1909). The earliest 307 report of the successful use of ozone in the food industry was to increase the storage life of meat in cold storage at a 308 facility in Cologne, Germany, in 1909 (Horvath et al., 1985). Early attempts to sterilize milk with ozone failed 309 (Vosmaer, 1914). The French seafood industry began using ozone to treat shellfish in 1936 (EPRI, 2001). The dairy 310 industry started to use ozone gas to remove unwanted molds from cheese storage facilities in the 1940s (EPRI, 2001).

311

312

313 Compared to the early adoption and long history of use in Europe, the U.S. food industry was slow to adopt ozone as an antimicrobial treatment (EPRI, 2001; Sarron et al., 2021; B. Tiwari & Rice, 2012). The FDA declared ozone to be 314 GRAS for use in bottled water in 1995 (50 FR 57130, November 13, 1995) and GRAS for use in food processing in 315

316 1997. In 2001, the FDA recognized ozone as GRAS as a secondary direct food additive. Organic processing and

handling operations used ozone as an alternative to chlorine products and other possibly compatible applications 317

318 prior to the passage of the Organic Foods Production Act (NOP, 1995). We found no record in public comments or

319 in the Technical Advisory Panel (TAP) review prior to the original NOSB recommendation explaining the specific

320 uses and applications from early organic operations.

321

322 **Organic Foods Production Act, USDA Final Rule:**

323 The Organic Foods Production Act of 1990 (OFPA) does not include any reference to ozone (Organic Foods Production 324 Act of 1990, 1990).

325

326 The National List includes ozone for use in organic processing and handling at 7 CFR 605(b)(21). For crop production

purposes, USDA organic regulations include ozone on the National List at 7 CFR 205.601(a)(5) with an annotation 327

328 specifying that ozone is only for use as an irrigation water cleaner. Ozone for handling and processing was included on

329 7 CFR 605(b) in the first publication of the NOP Final Rule (65 FR 80548, December 21, 2000). Use of ozone as a

330 disinfectant in organic crop production on 7 CFR 601(a) was added to the National List in 2003 (68 FR 61987, October 31, 331 2003). Synthetic ozone is not allowed for organic livestock production.

332

333 In NOP 5023: Guidance, Substances Used in Post-Harvest Handling of Organic Products, the NOP explains that materials 334 on the National List at 7 CFR 205.605 (such as ozone) may be used for both post-harvest handling and pest control (NOP, 335 2016c).

336

337 International:

338

339 International Organic Food Standards: CODEX Alimentarius Commission-Guidelines for the Production,

- Processing, Labelling and Marketing of Organically Produced Foods (GL 32-1999) 340
- 341 Ozone does not appear in Annex 2, Table 3, "Ingredients of non-agricultural origin referred to in section 3 of these 342 guidelines" (FAO/WHO Joint Standards Programme, 2013).³
- 343

³However, Section 5 of the Codex Guidelines provides for member states "to evaluate new substances for use in organic production" based on the following criteria in §5.1 (FAO/WHO Joint Standards Programme, 2013):

they are consistent with principles of organic production as outlined in these Guidelines; i)

ii) use of the substance is necessary/essential for its intended use;

manufacture, use and disposal of the substance does not result in, or contribute to, harmful effects on the environment; iii)

iv) they have the lowest negative impact on human or animal health and quality of life; and

approved alternatives are not available in sufficient quantity and/or quality. v)

All stakeholders should have the opportunity to be involved in the evaluation process of substances to be included on the lists (FAO/WHO Joint Standards Programme, 2013). Member states should make the list available to other countries upon request (FAO/WHO Joint Standards Programme, 2013).

344	International Organic Agriculture Standards: IFOAM - Organics International (International Federation of Organic
345	Agriculture Movements)
346	Ozone is allowed to clean equipment without limitations in Appendix 4, Table 2, "Indicative list of equipment
347	cleansers and equipment disinfectants" of the current IFOAM guidelines (IFOAM, 2014).
348	
349	Canada: Organic production systems-General principles and management standards (CAN/CGSB-32.310), Organic
350	production systems-Permitted substances list (CAN/CGSB-32.311)
351	Ozone is allowed under §8.1.2(b) of the Canadian General Standards Board's Organic Production Systems: General
352	principles and management standards for organic production (CAN/CGSB, 2021a). Ozone appears without a
353	limiting annotation in Table 6.5 "Processing aids" and Table 7.3 "Food-grade cleaners, disinfectants and sanitizers
354 355	permitted without a mandatory removal event" of the Canadian General Standards Board's Organic production
355 356	systems: Permitted Substances List (CAN/CGSB, 2021b).
357	Europe and United Kingdom (Northern Ireland): European Economic Community (EEC) Council Regulation
358	(EC No. 2018/848 and 2021/1165)
359	Ozone does not appear in the EU organic standards. Article 24(1)(g) of EC 2018/848 says that the European
360	Commission may authorize products for cleaning and disinfection of processing and storage facilities (EU
361	Commission, 2018). Annex IV, Part C of the EC 2021/1165 contains the lists of products that can be used for
362	cleaning and disinfection of processing and storage facilities (EU Commission, 2021). As of November 1, 2024, that
363	list is empty.
364	
365	The EU Expert Group for Technical Advice on Organic Production (EGTOP) considered ozone, among other
366	cleaning and disinfecting techniques, prior to the publication of the current regulations, but did not make a
367	conclusive recommendation about ozone and other specific substances (EGTOP, 2014, 2016). EGTOP
368	recommended that ozone be permitted to treat potable water, but that it not be permitted for direct contact with food
369	(EGTOP, 2014).
370	
371	While the previous regulation addressed disinfection of livestock facilities, it did not explicitly address disinfection
372	of plant material, including post-harvest washing, or disinfectants used in processing and handling (EGTOP, 2016;
373	EU Commission, 2008a). EC 2018/848 authorizes the listing of such substances for the first time, but neither EC
374	2018/848 nor EC 2021/1165 established criteria to evaluate such substances (EU Commission, 2018, 2021). EGTOP
375	proposed such criteria, along with a list of unwanted substances for organic production, processing, and handling
376	(EGTOP, 2021). Ozone is not on any of the unwanted lists (EGTOP, 2021). The European Commission has not
377	acted on EGTOP's recommendation as of December 2024.
378 379	$\mathbf{L}_{\mathbf{r}}$
380	Japan: Japan Agricultural Standard (JAS) for Organic Production Ozone is allowed with limitations under the JAS standard for organic food. Ozone appears on Annex A "Additives
381	(for Organic Processed Foods excluding Alcohol Beverages)" with the annotation "Limited to the use for
382	disinfecting the processed meat products, or cleaning of eggs" (Japanese Agricultural Standard for Organic
383	Processed Foods, 2022).
384	110ccsscd 1 00ds, 2022).
385	Korea: Republic of Korea (ROK) Korean Organic Act
386	Ozone is allowed with limitations under the ROK standard for organic food. Article 3 §1 of the Enforcement Rule
387	Of The Act On The Promotion Of Environment-Friendly Agriculture And Fisheries And The Management Of And
388	Support For Organic Foods" refers to permitted substances on Annex 1 (KMAFRA, 2020). "Ozone water" appears
389	in Annex I, Part C, Table 1, "Substances permitted for use as food additives or processing aids" with the following
390	annotation: "cleaning or disinfecting agent used on the surface of food" (KMAFRA, 2020).
391	
392	Switzerland: Federal Office for Agriculture (FOAG), Switzerland Organic Ordinances, Organic Farming Ordinance

- 393 (SR 910.18), EAER Ordinance on Organic Farming (SR 910.181), FOAG Ordinance on Organic Farming
 394 (SR 910.184)
- 395 Ozone does not appear in the Swiss Ordinances on organic farming (Swiss EAER, 1997; Swiss FOAG, 1997).
- 396 Switzerland participates in EGTOP. Consequently, the status of ozone appears to be similar to that in the European
- 397 Union and Great Britain, where ozone is allowed to disinfect water, but prohibited for direct food contact (EGTOP,
- 398 2014).399

400 <u>Taiwan: Organic Agriculture Regulations</u>

- 401 Ozone appears in Chapter 2 "Substances allowed to be used in production, processing, packaging, distribution and
- 402 sale", Part 1 "Processing, packaging, distribution, and sale", Table 4, "Other substances allowed to be used" with the
- 403 condition, "Only for cleaning and infection (*sic*) purpose" (Organic Agricultural Promotion Act, 2018).

404		
405 406	United Kingdom (Great Britain): Organic Products Regulations (2009), Retained Council Regulations (E (834/2007, 889/2008, and 1235/2008)	<u>(C)</u>
407	The standard for Great Britain is based on the retained European Council Regulations prior to the United	Kingdom's
408	exit from the European Union (EU Commission, 2007, 2008a, 2008b). As noted above for the EU regular	
409	is not mentioned in the implementing regulation (EU Commission, 2008a). EGTOP recommended that or	zone be
410	allowed to treat potable water, but prohibited for direct contact with food (EGTOP, 2014).	
411		
412	Evaluation Questions	
413 414 415	Classification of the Substance:	
416 417	Evaluation Question #1(A): Describe if this substance is extracted from naturally occurring plant, animal sources.	, or mineral
418	Ozone is not extracted from a naturally occurring plant, animal, or mineral source. Ozone (O_3) is produce	ed by an
419	electrochemical or photochemical reaction using diatomic oxygen (O2). The oxygen used as a precursor t	o produce
420	ozone is sourced from naturally occurring atmospheric oxygen (O ₂).	
421 422	Evaluation Question #1(B): Describe the most prevalent processes used to manufacture or formulate this	substance
423	Include any chemical changes that may occur during manufacture or formulation of this substance.	brobuiteet
424	The primary process used to generate ozone is by electrical discharge of oxygen. The only feedstock is at	
425	oxygen (O_2) , which is abundant in nature. The chemical reactions involved in corona discharge are outline O_2 .	ied in
426 427	Equation 1, Equation 2, and Equation 3 (Brodowska et al., 2018; Foley & Kirschner, 2022):	
428	$O_2 + e^-(high energy) \rightarrow 20 + e^-(low energy)$	
429		Equation 1
430		
431	$20 + 20_2 \rightarrow 20_3$	
432		Equation 2
433 434	$0 + 0_2 + \mathbf{Z} \rightarrow 0_3 + \mathbf{Z}$	
435	$0 + 0_2 + 2 \rightarrow 0_3 + 2$	Equation 3
436 437 438 439 440 441 442	High-energy electrons (6-7 eV) break the oxygen double bonds (Foley & Kirschner, 2022). The oxygen <i>a</i> attach to oxygen <i>molecules</i> (O ₂) either by direct collision or by a three-body collision with another gas (Z nitrogen or nitrogen oxides. These additional gases are also produced <i>in situ</i> , mainly by corona discharge Kirschner, 2022; Horvath et al., 1985; Tapp & Rice, 2012). Much of the ozone generated industrially is used for water treatments. Consequentially, researchers have	Z), such as (Foley &
442 443 444 445 446	interested in the efficiencies that can be gained by generating ozone directly in water through an electroch reaction (Okada & Naya, 2012). The anode reactions are outlined in Equation 4, Equation 5, and Equation & Naya, 2012):	hemical
447	$2H_2O \rightarrow O_2 + 4H^+ + 4e^-E^0 = 1.229 V$	
448		Equation 4
449 450	$3H_2O \rightarrow O_3 + 6H^+ + 6e^-E^0 = 1.511V$]
430 451	$3H_2U \rightarrow U_3 + 6H + 6E E = 1.311V$	Equation 5
452		Bquation
453 454	$O_2 + H_2 O \rightarrow O_3 + 2H^+ + 2e^- E^0 = 2.075 V$	Equation 6
455 456 457	The cathode balances the reaction in Equation 7 (Okada & Naya, 2012):	
458	$2H^+ + 2e^- \rightarrow H_2 E^0 = 0 V$	
459		Equation 7
460		

461 462	The cumulative reactions use significantly less electricity than corona discharge (Okada & Naya, 2012) and produce hydrogen (H ₂) as a co-product, which can be used to generate energy.		
463 464	The third method processors used in commercial food production is photochemical, through ultraviolet (UV) light		
465	radiation (Horvath et al., 1985; Tapp & Rice, 2012). Most UV generators use low-pressure mercury lamps that cause		
466	oxygen atoms to dissociate at a wavelength of 185 nm (Tapp & Rice, 2012). The oxygen radicals formed by		
467 468	photodecomposition readily attach to the surrounding O_2 molecules to form ozone (O_3) (Tapp & Rice, 2012).		
469 470	Evaluation Question #1(C): Discuss whether this substance is agricultural or nonagricultural. If the substance is nonagricultural, is it synthetic or nonsynthetic (natural) [7 U.S.C. 6502(22); NOP 5033-1 (Decision Tree for		
471	Classification of Materials as Synthetic or Nonsynthetic); NOP 5033-2 (Decision Tree for Classification of		
472	Agricultural and Nonagricultural Materials for Organic Livestock Production of Handling)]?		
473 474	Agricultural or nonagricultural classification		
475	Evaluation of ozone against Guidance NOP 5033-2 Decision Tree for Classification of Agricultural and		
476 477	Nonagricultural Materials for Organic Livestock Production or Handling (NOP, 2016b) is discussed below.		
478 479	1. Is the substance a mineral or bacterial culture as included in the definition of nonagricultural substance at section 205.2 of the USDA organic regulations?		
480 481	No. Ozone is produced from atmospheric oxygen and electrical discharge or UV light.		
482	2. Is the substance a microorganism (e.g., yeast, bacteria, fungi) or enzyme?		
483 484	No. Ozone is not a microorganism.		
485	3. Is the substance a crop or livestock product or derived from crops or livestock?		
486	No. Ozone originates from atmospheric oxygen using physical and electrochemical processes. Although crops		
487	release oxygen as part of photosynthesis, it is not possible to separate "agricultural" oxygen from "non-agricultural"		
488 489	sources of oxygen.		
490	4. Has the substance been processed to the extent that its chemical structure has been changed?		
491	Yes. The process of ozone generation involves the breaking of the oxygen double bonds of atmospheric oxygen (O ₂)		
492	by the energy produced from electrons. The chemical structure is changed from O ₂ to O ₃ . This is a small, but		
493 494	significant and essential change in chemical composition.		
495	5. Is the chemical change a result of naturally occurring biological processes such as fermentation or use of		
496	enzymes; or a result of mechanical/physical/biological processes described under section 205.270(a)?		
497 498	No. The ozone generation process is electrochemical or photochemical, and not biological.		
499	Therefore, ozone should be classified as a nonagricultural substance.		
500			
501	Synthetic or nonsynthetic classification		
502 503	Evaluation of ozone against Guidance NOP 5033-1 <i>Decision Tree for Classification of Materials as Synthetic or Nonsynthetic</i> (NOP, 2016a) is discussed below.		
503 504	Nonsynthetic (INOP, 2010a) is discussed below.		
505	1. Is the substance manufactured, produced, or extracted from a natural source?		
506	Yes. Ozone is composed entirely of oxygen, which comprises about 21% of the atmosphere. The other reactants are		
507	electrons (from electricity), generated by human-created devices.		
508 509	2. Has the substance undergone a chemical change so that it is chemically or structurally different than how		
510	it naturally occurs in the source material?		
511	Yes. For commercial applications, generators synthetically produce ozone from atmospheric oxygen. Diatomic		
512	oxygen is changed to triatomic oxygen (ozone) by corona discharge, electrolysis, or photochemical reactions		
513	produced by ultraviolet light.		
514			
515	<i>2b. At the end of the extraction process, does the substance meet all the criteria described at 4.6 of NOP 5033?</i>		
516	This does not apply to ozone. The various chemical reactions do not involve an extraction process.		
517			

518 3. Is the chemical change created by a naturally occurring biological process, such as compositing, 519 fermentation, or enzymatic digestion; or, by heating or burning biological matter? 520 No. The chemical change for all commercial food-grade ozone, as described in this report, is the result of 521 electrochemical reactions with either corona discharge, electrolysis, or photochemical by exposure to artificial 522 ultraviolet light. 523 524 Therefore, ozone should be classified as synthetic according to the decision tree. 525 526 Evaluation Question #1(D): Does this substance in its raw or formulated forms contain nanoparticles? According to NOP Policy Memo 15-2 Nanotechnology, nanotechnology is conducted at the nanoscale, which is 527 about 1 to 100 nanometers (nm) (NOP, 2015). The NOP uses the term "incidental nanomaterials" to refer to 528 529 substances that are byproducts of other manufacturing (e.g., homogenization, milling) or that occur naturally. The NOP uses the term "engineered nanomaterials" to refer to substances designed and manufactured to have unique 530 531 properties or behavior attributable to particle size. However, these terms are not mutually exclusive. 532 533 Ozone is a gas at standard temperature and pressure, and it is comprised of individual, disassociated O_3 molecules. 534 An ozone molecule is 1.26 Å or 0.126 nm (Bocci, 2011). This size falls below the NOP's defined nanoscale range, which goes down to 1 nm (NOP, 2015). Researchers are also investigating the use of ozone nanobubbles to improve 535 536 disinfection effectiveness by increasing the stability of ozone and its surface area coverage (Seridou & Kalogerakis, 537 2021). 538 539 Ozone fits the definition of an incidental nanomaterial because its nanoparticle scale is an aspect of its natural 540 occurrence. However, one could argue that it also fits the definition of an engineered nanomaterial because ozone's 541 unique properties (for example, its effectiveness as a funigant) are attributable to its particle size. In other words, 542 while ozone's nano-scale size is naturally occurring, some of its unique and beneficial properties are a result of its 543 size. 544 545 Evaluation Question #1(E): Does this substance in its raw or formulated forms contain ancillary substances? 546 No. Food-grade ozone contains no ancillary substances as defined by the NOSB's 2016 recommendation. 547 548 Evaluation Question #1(F): Is this substance created using excluded methods? 549 No. Ozone is a non-agricultural synthetic chemical. It is generated from a non-biological source-atmospheric 550 oxygen, and electricity or ultraviolet light. 551 552 Evaluation Question #2: Specify whether this substance is categorized as generally recognized as safe (GRAS) when used according to FDA's good manufacturing practices [7 CFR 205.600(b)(5)]. If not categorized as GRAS, 553 554 describe the regulatory status. Ozone is GRAS as a secondary direct food additive permitted in food for human consumption (21 CFR 173.368). It 555 556 is also GRAS as an antimicrobial agent used to disinfect bottled water (21 CFR 184.1563). The water itself must 557 meet the microbiological, physical, chemical, and radiological quality standards established by the FDA 558 [21 CFR 165.110(b)(2) – (b)(5)]. Current good manufacturing practice requires a maximum residual level of 559 0.4 mg / L of ozone in the water, at the time of bottling [21 CFR 184.1563(c)]. 560 561 **Purpose and Necessity of the Substance:** 562 563 Evaluation Question #3: Describe whether the primary technical function or purpose of this substance is a preservative [7 CFR 205.600(b)(4)]. 564 565 The FDA describes a chemical preservative as follows (21 CFR 101.22): 566 567 (a)(5) The term *chemical preservative* means any chemical that, when added to 568 food, tends to prevent or retard deterioration thereof, but does not include 569 common salt, sugars, vinegars, spices, or oils extracted from spices, substances 570 added to food by direct exposure thereof to wood smoke, or chemicals applied for 571 their insecticidal or herbicidal properties. 572 573 While this definition is somewhat ambiguous, we interpret it to mean that a chemical disinfectant, such as ozone, 574 would not be considered a chemical preservative. Ozone is not an ingredient incorporated into food, having a lasting 575 effect to prevent oxidation or other deterioration of food. Furthermore, ozone may be applied for insecticidal 576 purposes (such as when used as a fumigant), or microbial disinfection (a seemingly similar purpose). 577

578 The primary technical function of ozone in food handling is as an antimicrobial disinfectant (Brodowska et al., 2018; 579 Guzel-Seydim et al., 2004; O'Donnell et al., 2012). If other steps are taken to limit the recolonization of a treated 580 food product (such as vacuum sealing), the disinfection of decay-causing microorganisms can help to preserve some 581 agricultural products. Ozone also deactivates various enzymes that accelerate the degradation of various fruits, 582 vegetables, and fruit juices, effectively extending the shelf-life of those products (Mayookha et al., 2023). 583 584 Carrots are one of the most studied vegetables in association with ozone treatment. Scientists demonstrated in 585 numerous studies that microbial activity is decreased mainly by cellular disruption, as described in Action of the Substance, and storage life is extended via preserved quality after ozone treatment (Sarron et al., 2021). Scientists 586 also demonstrate consistently lower microbial counts, longer storage life, and better quality of lettuce and other 587 salad greens after treatment, when compared to untreated varieties of these crops (Sarron et al., 2021). Scientists 588 589 treating tomatoes with ozone gas in a modified atmosphere storage chamber prevented microbial degradation from 590 molds and fungi by inactivation of spores and vegetative fungi as described in Action of the Substance (Sarron et al., 591 2021). 592 593 Scientists have demonstrated that ozone is effective at reducing pathogenic fungi that produce mycotoxins in grains 594 if applied when the grain is first stored, particularly if moisture levels are high (Afsah-Hejri et al., 2020; Tiwari et 595 al., 2010). Efficacy is a function of ozone concentration, moisture content, duration, and ozone dispersion (B. K. 596 Tiwari et al., 2010). Treatment lengths range from minutes to days and concentrations range from 50 ppm to 4% 597 with variable results (B. K. Tiwari et al., 2010). These include Fusarium spp., Aspergillus spp., and Penicillium spp. 598 In addition, the strong oxidizing properties of ozone degrades the mycotoxins produced by these organisms, 599 including aflatoxins, ochratoxin A, fumonisins, deoxynivalenol (DON), and zearalenone (Afsah-Hejri et al., 2020). 600 601 Ozone is also effective as an insecticide for various grain storage pests when used as a fumigant (Tiwari et al., 2010). Grain damaged by insects is more prone to decomposition and molds that cause mycotoxins (Neme & 602 Mohammed, 2017). Gaseous ozone treatments at concentrations between 25 ppm and 50 ppm over a period ranging 603 604 from six hours to five days were able to achieve over 50% mortality of target pests with some treatments showing 605 100% efficacy against certain pests (B. K. Tiwari et al., 2010). 606 607 Ozone has antibacterial and antifungal properties, as demonstrated by experiments with almonds, Brazil nuts, and 608 pistachios (Gyawali et al., 2024). Almonds and other shelled tree nuts are required to be heat treated or have another 609 validated method that achieves a 4-log (99.99%) reduction in Salmonella (USDA Specialty Crops Program, 2022). 610 However, in the studies we reviewed and cited in a recent literature review article (Gyawali et al., 2024), ozone 611 failed to meet the target 4-log reduction of the pathogen of concern of the different nuts (de Oliveira et al., 2020; Gyawali et al., 2024; Perry et al., 2019). 612 Brazil nuts inoculated with A. flavus and were treated with ozone gas for four hours at concentrations 613 614 between 2.42 and 13.24 mg/L (de Oliveira et al., 2020). The treatment of 8.88 mg/L achieved a 3.1 log 615 reduction of A. flavus and was not significantly different from the higher treatment (de Oliveira et al., 2020). The A. flavus colonies displayed a distinct change in color and shape that showed oxidation of the 616 morphological structure (de Oliveira et al., 2020). 617 Almonds and pistachios in the shell were inoculated with Salmonella enterica, placed in a vacuum 618 • chamber, and treated with ozone at 160 mg/m³ for 30 minutes (Perry et al., 2019). The pistachios were also 619 soaked in brine (Perry et al., 2019). The almonds showed a 2.9 log reduction in Salmonella, but the 620 pistachios had only a 0.8 log reduction (Perry et al., 2019). The relative lack of efficacy was attributed to 621 the ability of S. enterica to survive in dry environments (Perry et al., 2019). 622 623 624 Evaluation Question #4: Will this substance primarily be used to recreate or improve flavors, colors, textures, or nutritive values lost in processing (except when required by law)? If so, describe how [7 CFR 205.600(b)(4)]. 625 626 No. We found no evidence that processors apply ozone treatments to recreate or improve flavors or colors, as it is an 627 odorless, colorless gas that leaves no aftertaste. 628 629 Regarding nutritive value, most scientists explore whether ozone degrades nutrients rather than enhances them. 630 Scientists observed that several foods treated with ozone lost color compared to untreated foods. Ozone treatment 631 had this particular effect on the following agricultural products (Brodowska et al., 2018): 632 apple juice • blackberries 633 • 634 • broccoli 635 carrots . 636 grapes • 637 lettuce •

- 638 oranges
- 639 pistachios
- 640 tomato juice
- 641

Evaluation Question #5: Describe any effect or potential effect on the nutritional quality of the food or feed when this substance is used [7 CFR 205.600(b)(3)].

After harvest, vitamin content begins to decline in fresh fruits and vegetables (Kader, 2002). However, ozone

645 treatment of wash water and in storage atmospheres can have a measurable impact on nutritional quality (Aslam et

al., 2020; Botondi et al., 2021; Sarron et al., 2021). Fruit and vegetable nutrient content can be preserved by

- 647 inhibiting the decay process, which can lead to the loss of specific vitamins and other nutrients. Scientists observed 448 high crucicular decay process, which can lead to the loss of specific vitamins and other nutrients. Scientists observed
- higher vitamin A and β -carotene (beta carotene) in carrots treated with ozone compared to untreated carrots (Sarron et al., 2021). On the other hand, the strong oxidizing potential can reduce the content of certain vitamins and
- ancillary nutrients. Vitamin B_1 (thiamine) and vitamin C (ascorbic acid) are the most vulnerable to loss by oxidation (Aslam et al., 2020).
- 651 (As 652

Researchers who have analyzed the negative impacts on nutrient content in fresh-cut fruits and vegetables assume nutrient loss or degradation to be limited only to plant surfaces and infected cut areas (Aslam et al., 2020; Botondi et al., 2021). Studies that empirically validate this hypothesis are limited. We found one simulation that used cut leafy greens that were then washed in ozonated water and exposed to ozone gas (Shynkaryk et al., 2015). The researchers

found that leaf uptake of ozone through the stomata and cut surfaces was limited to only a few millimeters

- 658 (Shynkaryk et al., 2015).
- 659

In a study of strawberries, Pérez et al. (1999) reported that ozonated fruit had three times the vitamin C content compared to the untreated fruit after three days. The researchers concluded that any short-term nutrient loss from ozonation was negated by the observed increase in biosynthesis of vitamin C from stored carbohydrates (Pérez et al., 1999). By day 7 post-treatment, the ozonated fruit had slightly lower (but statistically significant) vitamin C content than the untreated fruit (Pérez et al., 1999). Scientists in another study demonstrated that ozone-treated potatoes had higher vitamin C content than untreated potatoes (Rice, 2012).

666

667 <u>Environment and Human Health Effects</u>

668

Evaluation Question #6: List any reported residues of heavy metals or other contaminants in excess of FDA
 tolerances that are present or have been reported in this substance [7 CFR 205.600(b)(5)].

The FDA establishes "action levels" for poisonous or deleterious substances that are unavoidable in human food and

animal feed (U.S. FDA, 2000). These include aflatoxin, cadmium, lead, polychlorinated biphenyls (PCBs), and

673 many other substances. The FDA uses different action level tolerances for these substances, depending on the

commodity. Commodities are largely food items; however, the FDA also includes tolerances for ceramic and metal
 items, such as eating vessels and utensils. FDA guidance does not identify any action levels for these contaminant

- 676 substances in ozone (US FDA, 2000).
- 677

As a gas, ozone is unlikely to be contaminated with heavy metals. We found no evidence of food-grade ozone

679 contaminated by heavy metals or any other contaminants subject to FDA tolerances or action levels. Ozone

- 680 generation by nuclear power reactors may be radioactive. However, the contamination risks associated with this
- 681 production method prevent commercial applications from such sources, including food and water treatment (Guzel-
- 682 Seydim et al., 2004; Wojtowicz, 2005). The current *Food Chemicals Codex* also does not specify limits on 683 impurities in ozone for assenic, lead, or other elemental contaminants (U.S. Pharmaconaia, 2024)
- impurities in ozone for arsenic, lead, or other elemental contaminants (U.S. Pharmacopeia, 2024).
- 684
- Evaluation Question #7: Discuss and summarize findings on whether the manufacture and use of this substance may
- be harmful to the environment or biodiversity [7 U.S.C. 6517(c)(1)(A)(i) and 7 U.S.C. 6517(c)(2)(A)(i)].
- While ozone in the upper stratosphere is vital to shielding the lower atmosphere from solar radiation, at ground level, it is regarded as a pollutant (US EPA, 2024a).
- 689

690 Ozone generator systems produce waste ozone that needs to be vented because they are not 100% efficient in mass

- transfer from the carrier gas stream (Foley & Kirschner, 2022). The generator systems may include sodium bisulfite or activated carbon filters to scrub the excess ozone, but such systems add to the operational costs (Foley &
- 692 or activated carbon filters to scrub the excess ozone, but such systems add to the operational costs (Foley &
 693 Kirschner, 2022). Ozone generator systems can also use transition metals and their oxides to catalyze the
- decomposition of ozone to oxygen prior to venting (Foley & Kirschner, 2022). Some ozone generator systems will
- also heat the vent to $300 \,^{\circ}\text{C}$ (572 °F) using electric or natural gas heaters to accelerate decomposition (Foley &
- 696 Kirschner, 2022).
- 697

698 Effects on plants

- 699 Ozone is toxic to plants and animals (terrestrial and aquatic) (Wojtowicz, 2005). Ozone damage to agricultural crops
- caused by smog was first observed in California grapes in the 1950s (Richards et al., 1958). The impacts of ozone
- pollution on plant growth and health have received considerable attention from scientists worldwide (Jimenez-
- Montenegro et al., 2021; W. H. Smith, 1992). Ozone damage causes visible yellowing of the leaves (chlorosis) and
- ⁷⁰³ leaf death at higher levels (Grulke & Heath, 2020; Richards et al., 1958). Exposure to 0.2 ppm ozone results in a
- reduction of photosynthesis by a factor of 2 (Wojtowicz, 2005).
- Airborne ozone causes environmental stress in forest plants irrespective of their species (Günthardt-Goerg et al.,
- 2023). In one experiment, exposure of forest plants to elevated ozone levels caused visible tissue damage to the
- leaves and other organs exposed (Grulke & Heath, 2020; Günthardt-Goerg et al., 2023). Leaves exposed to ozone
- also showed signs of interference with gas exchange and respiration (Günthardt-Goerg et al., 2023). Forests in the
- 710 U.S. with elevated levels of ozone grew more slowly compared with forests with lower levels of ozone (Grulke &
- Heath, 2020). Little is known about ozone's effects on ecosystem processes, such as water, carbon, and nutrient
- 712 cycling (Grulke & Heath, 2020).713

714 Effects on aquatic animals

- The adverse impacts on wildlife caused by air pollution in general and ozone in particular have been studied less
- than the impacts on plant life (Newman et al., 1992). Studies of the toxicity of ozone-treated wastewater
- demonstrate mixed results of impacts on fish and other aquatic animals. Some studies show that ozone reduces the
- toxicity of effluent, while other studies show the opposite (Lim et al., 2022). The results varied by the species and
- age of the model, and the other pollutants in the effluent. Increased toxicity could not be solely attributed to ozone are accurately and the latter because the solely attributed to ozone (0) by (0
- exposure (Lim et al., 2022). The lethal concentrations of ozone (96 hr LC_{50}) for rainbow trout, channel catfish, and retrined base are 0.3, 20, and 80 mb, recreatively (Weitewigz, 2005)
- striped bass are 9.3, 30, and 80 ppb, respectively (Wojtowicz, 2005).

723 Effects on terrestrial animals

- A review of the literature on air pollution's impact on biodiversity found only one study specific to ozone's impacts on terrestrial wildlife and biodiversity (Newman et al., 1992). The researcher documented a genetic change in the
- sensitivity to ozone in deer mice (Newman et al., 1992; Richkind, 1979). Deer mice collected in Los Angeles that
- 727 were exposed to elevated levels of ambient ozone showed greater resistance to ozone exposure in experimental
- conditions than laboratory mice, but still suffered adverse health effects (Richkind & Hacker, 1980). Ozone causes
- ⁷²⁹ lung damage and impaired respiratory function in laboratory animals (Lippmann, 1989; Menzel, 1984; NTP, 1994).
- Ozone caused lesions in the lungs, noses, and larynxes of exposed rats and mice in both short- and long-term studies
 (NTP, 1994). The lethal dose for half the experimental animals (4-h LD₅₀) for albino mice is 3.8 ppm (Wojtowicz,
- 732 2005). 733

734 Effects on environment

- 735 The U.S. EPA classifies ground-level ozone as a greenhouse gas, but notes that it is different from other greenhouse 736 gases in several ways (US EPA, 2016). Ozone's impact on global warming and climate change depends on its 737 placement (NASA, 2015). Stratospheric ozone has a net warming effect that is balanced by preventing harmful
- placement (NASA, 2015). Stratospheric ozone has a net warming effect that is balanced by preventing harmitu
 ultraviolet radiation from reaching the earth. Ozone causes atmospheric warming by absorbing solar radiation
- (Wojtowicz, 2005). Ground-level ozone is a greenhouse gas that contributes to climate change by the same pathway
 stremula heat (UCAB, 2024).
- of trapping heat (UCAR, 2024).
- 741
- Ground-level ozone varies by season and location (US EPA, 2016). More ozone is produced from both natural
- sources and human activity during periods of high temperatures and long day lengths (Guicherit & Roemer, 2000;
- US EPA, 2024c). The amount of human activity (anthropogenic) causing air pollution and altitude are also factors
- that influence ozone levels (Guicherit & Roemer, 2000). More NO_x and VOC pollution causes higher ozone levels,
- making urban areas more likely to have high ozone levels than rural areas (Guicherit & Roemer, 2000; US EPA,
 2024a).
- 748
- 749 Ozone generators use electricity. The environmental impact of electricity is related to how the electricity is
- generated (US EPA, 2024b). Electricity produced from the burning of coal, oil, or natural gas will have a larger
- r51 carbon footprint than locations that rely primarily or entirely on renewable energy (Davis et al., 2016; Schivley et al., 2018).
- 752 al., 753
- Evaluation Question #8: Describe and summarize any reported effects upon human health from use of this substance
 [7 U.S.C. 6517(c)(1)(A)(i), 7 U.S.C. 6517(c)(2)(A)(i), and 7 U.S.C. 6518(m)(4)].
- 756 Ozone is considered a hazardous chemical substance (NIOSH, 2019). When used as an antimicrobial substance,
- 757 ozone has a beneficial effect on human health through the reduction of foodborne pathogens to safe levels

(Brodowska et al., 2018; Kim et al., 2003; O'Donnell et al., 2012; Suslow, 2004). The same chemical properties that
make ozone a powerful and effective antimicrobial agent used to control food-borne pathogens also make it toxic to
all living organisms, including humans (Menzel, 1984; Rice, 2012). Residual exposure in food is not an issue
because ozone decomposes rapidly into oxygen after it is applied either to wash water or in the controlled/modified
atmosphere chambers where food is stored (Brodowska et al., 2018; Guzel-Seydim et al., 2004; Pandiselvam et al.,
2019; Tapp & Rice, 2012).

764

Exposure to ozone is known to induce various toxic effects on both humans and experimental animals (Beckett,
1991; Klaassen, 2001; Menzel, 1984; Rice, 2012; Seagle, 1973). It has been described as "one of the most toxic and
ubiquitous air pollutants" (Menzel, 1984). Ozone's toxicity is a direct result of its strong oxidizing properties that
are toxic to the cells of all living organisms (Klaassen, 2001). Exposure to ozone also increases a person's
susceptibility to infections (Menzel, 1984). Researchers believe that interactions between particulate matter and
ozone contribute to respiratory system damage (Beckett, 1991; Jerrett et al., 2009).

771

The primary human health concern of ozone treatment of food and water is worker safety. Food handling and processing plant workers in close proximity to ozone generators in water treatment and food handling facilities are exposed to higher levels of ozone than the general public (Rice, 2012; Seagle, 1973). Ozone is an irritant to the eyes, nose, mouth, and upper respiratory system. In the U.S., the permissible exposure limit (PEL) for ozone set by the Occupational Health and Safety Administration (OSHA) is 0.1 ppm or 0.2 mg/m³ over an eight-hour time-weighted average (29 CFR 1910.1000).

778

Air pollution from off-gassed excess ozone in the proximity of handling facilities is also a health and safety concern (Rice, 2012). Scrubbing systems that capture the excess ozone reduce the levels of ozone released and are mostly

visit visual and the second se

device (Rice, 2012). Many researchers have examined the adverse health effects of ozone pollution (Bell et al.,

- 783 2014; Orellano et al., 2020; Zhang et al., 2021).
- 784

Jerret et al. (2009) correlated ozone pollution levels with respiratory mortality based on data collected from a large population in the U.S. between 1977 and 2000. In 96 metropolitan statistical areas, scientists observed that for every 10 ppb increase in exposure to ozone, there was a 2.9% increase in the risk of death from respiratory causes. The researchers concluded that the risk of dying from a respiratory cause is three times more likely in metropolitan areas with the highest ozone levels compared to places with the lowest ozone concentrations (Jerrett et al., 2009).

790

The elderly, women, and those living in poverty are particularly susceptible to the adverse impacts of ozone pollution (Bell et al., 2014). Pediatricians have linked high levels of ozone with near-fatal and fatal asthma attacks in children (Varghese et al., 2024). Scientists conducting related research have also observed a similar pattern of elevated health risks internationally from ozone pollution (Orellano et al., 2020; Zhang et al., 2021).

794 795

Ozone demonstrates the capacity to reduce pesticide residues in various foods (Diksha et al., 2023). In one

experiment, bok choy (pak choi) with residues of the organophosphorus pesticide malathion and the carbamate

pesticide carbosulfan was treated with ozonated water (Wang et al., 2021). The researchers found that as ozone

concentration increased, pesticides degraded more rapidly (Wang et al., 2021). These resulting decomposition

products were further broken down through hydrolysis, releasing H^+ and OH^- ions in the water (Wang et al., 2021).

801 Ozone disrupts specific types of hydrocarbons (unsaturated aliphatic moieties like alkynes and alkenes) by breaking

carbon chains and releasing benzene rings in the molecular structure of pesticides (Diksha et al., 2023). The released

803 smaller molecules are largely water soluble and can be further decomposed by hydrolysis (Diksha et al., 2023).
804

805 <u>Alternatives</u>

806 The following three sections explore possible alternatives to ozone that are non-synthetic, non-agricultural

substances, organic agricultural products, and other methods that are physical, mechanical, or otherwise non-

chemical in their mode of action. When considering alternatives for pathogen reduction, organic handlers and

809 processors are required to meet all relevant food safety requirements in addition to the organic standards. These

810 include the Food, Drug, and Cosmetic Act as amended by the Food Safety Modernization Act of 2011 (FSMA)

811 (21 CFR 301 et seq.), the Federal Meat Inspection Act (21 U.S.C. 601 et seq.), and the implementing regulations of

- the FSMA (80 FR 55908, September 17, 2015). While the FSMA does not require any specific performance
- standard for pathogen reduction, it requires all food handling facilities to have a Food Safety
- 814 Plan (21 CFR 117.126), conduct a hazard analysis (21 CFR 117.130), and implement preventive controls
- appropriate for food safety (21 CFR 117.135).

816

- 817 Some food groups have specific performance standards that handlers are required to meet. FDA guidance requires non-thermal deactivation of microorganisms in juices to be equivalent to thermal pasteurization to be considered 818 819 acceptable substitutes for food safety, which is a 5-log₁₀ or 99.999% reduction of the most resistant microorganism 820 of public health significance [21 CFR 120.24(b)]. The guidance for the industry to implement the juice pasteurization requirement has become an industry-wide standard (US FDA, 2004). The standard is to achieve a 5-821 822 log decrease or 99.999% inactivation of a microorganism's colony-forming units (Režek Jambrak et al., 2018). 823 Almonds are required to meet a 4-log decrease or 99.99% inactivation for Salmonella spp. (USDA Specialty Crops 824 Program, 2022). 825 826 Alternative methods are sometimes used in combination with ozone to increase efficacy and reduce ozone use (Fan 827 & Song, 2020; Floare et al., 2023; Khadre et al., 2001; O'Donnell et al., 2012). The alternative methods presented below may not always meet the 5-log reduction by themselves, but when combined, they can verify and validate that 828 829 their HACCP Plan meets the standard (Režek Jambrak et al., 2018). Combining different technologies has the 830 potential to protect food safety and optimize quality for a wide range of specific practical applications (Chiozzi et 831 al., 2022; Noci, 2017; Rawson et al., 2011; Režek Jambrak et al., 2018; Singla & Sit, 2021). 832 833 Evaluation Question #9: Are there alternative nonsynthetic (natural) source(s) of the substance [7 CFR 205.600(b)(1)]? 834 835 We found no evidence of commercial or practical sources that offer nonsynthetic ozone. Recovery of nonsynthetic 836 ozone appears to be unattainable with existing technologies. 837 838 Evaluation Question #10: Describe all nonagricultural nonsynthetic (natural) substances or products which may be 839 used in place of this substance [7 U.S.C. 6517(c)(1)(A)(ii)]. Identify which of those are currently allowed under the 840 NOP regulations. 841 Acids 842 843 Various nonsynthetic acids (e.g., acetic acid, lactic acid, and citric acid) have antimicrobial properties (Bermúdez-844 Aguirre & Barbosa-Cánovas, 2013; In et al., 2013; Mani-López et al., 2012; Ricke, 2003). Both citric acid 845 (produced by microbial fermentation of carbohydrate substances) and lactic acid are on the National List of 846 nonagricultural nonorganic substances allowed as ingredients in or on processed products labeled as "organic" or 847 "made with organic (specified ingredients or food groups) [7 CFR 205.605(a)(1)]. 848 849 The mechanisms by which organic acids are thought to reduce microbial activity take place by multiple modes of 850 action, including acidification inside the cell (cytoplasm) with subsequent uncoupling of energy production and 851 regulation, and accumulation of the undissociated acid to toxic levels (Mani-López et al., 2012). The undissociated 852 acid molecules flow through the cell membranes of the microorganisms and are ionized inside, deforming the cell 853 structure and interfering with enzymatic activities, disrupting proteins and DNA structures, and ultimately damaging the extracellular membrane (In et al., 2013; Mani-López et al., 2012). The acidity inhibits cell division and decreases 854 855 viability by damaging the RNA and DNA (Mani-López et al., 2012). Cells are not instantly destroyed, but are 856 instead fatally injured (In et al., 2013). 857 858 When used at 0.5% concentration in a microbial broth, citric acid, lactic acid, and acetic acid all were effective in 859 inhibiting the growth and reducing the populations of four Shigella species (S. sonnei, S. boydii, S. flexnari, and S. 860 dysenteriae), all foodborne pathogens, by between 1 and 2 logs (In et al., 2013). Lactic acid was able to achieve a 5-861 log reduction of S. sonnei after two hours and a 2-log reduction of S. boydii in the same amount of time. The 862 researchers inoculated lettuce with Shigella cultures and submerged them in water with a no-treatment control and a 863 0.5% solution of each of the three acids over a 10-hour period. While cells were not destroyed in the same way that 864 ozone works, the various acids injure the cell to reduce its viability (In et al., 2013). Acetic acid was the most 865 effective against S. dysenteriae with 100% injury after 8 hours. Lactic acid was the most effective against the other 866 three species. (In et al., 2013). Further research is needed to determine whether these acids can achieve comparable 867 and predictable broad-spectrum pathogen reduction and validate whether they can be a viable substitute for ozone. 868 869 Citric acid treatment of nutrient broths inoculated with E. coli, S. aureus, and C. albicans reduced the populations of all three species, with C. albicans showing the greatest sensitivity (Eliuz, 2020). Spinach inoculated with E. coli, S. 870 typhimurium and L. monocytogenes had its pathogen load reduced by approximately 4-log by synergistic treatment 871 of 1% citric acid and pulsed broad-spectrum xenon light (Cho & Ha, 2021). Citric acid achieved less than a one-log 872 reduction of all three of the pathogens, and xenon light by itself achieved a 4-5 log reduction with a 60-minute 873
- treatment time, a 60-minute treatment time using both xenon light and citric acid achieved greater than a six-log
- reduction in all cases (Cho & Ha, 2021). Another experiment involved romaine lettuce, grape tomatoes, and baby carrots inoculated with *E. coli* and compared the results of treatment with ozone, citric acid, UV-light, and chlorine

- solutions (Bermúdez-Aguirre & Barbosa-Cánovas, 2013). Citric acid was ineffective on lettuce and carrots, and
 resulted in less than a 1-log reduction in tomatoes, performing significantly worse than ozone as a disinfectant
- 879 (Bermúdez-Aguirre & Barbosa-Cánovas, 2013).
- 880

881 Microorganisms

- 882 Microorganisms appear on the National List at 7 CFR 205.605(a)(19). Beneficial microorganisms are another well-
- established, nonsynthetic strategy that can be used to reduce risks from foodborne pathogens, maintain product
- quality, and extend the shelf life of food (Bogsan et al., 2015; Devlieghere et al., 2004). Researchers observed that
- Lactobacillus spp. and other lactic acid bacteria (LAB) applied to the surface of various fresh fruits and vegetables inhibits the growth of foodborne pathogens such as *Salmonella* spp., *Listeria monocytogenes*, and *E. coli* O157:H7,
- by the excretion of lactic acid and competitive exclusion, production of bacteriocins, and other complex modes of
- action that are not fully understood (Agriopoulou et al., 2020). ⁴ Efficacy varied by species of beneficial bacteria,
- process duration, temperature, target species, and food matrix (Agriopoulou et al., 2020). As noted above, lactic acid
- produced by LAB inhibits and ultimately renders microorganisms non-viable (Mani-López et al., 2012). The
- 891 presence of the LAB also effectively extends the shelf-life of the crops and maintains product quality (Agriopoulou
- et al., 2020).
- 893

894 Bacteriocins

- 895 Toxins produced by bacteria, known as bacteriocins, are another possible alternative for ozone (Devlieghere et al.,
- 2004; Schneider et al., 2018; Yang et al., 2014). As noted above, LAB produces bacteriocins, and other microbial
- species commonly used in food handling and processing also produce bacteriocins (Devlieghere et al., 2004; Yang
- et al., 2014). Bacteriocins can be classified as colicins or microcins, based on their specific activity against target
- pathogens and by their mode of action (Yang et al., 2014). Colicins are high molecular weight antibacterial proteins
- produced by bacteria that kill closely related species to reduce competition for space and nutrients (Yang et al.,
- 2014). The colicin-producing species also produces immunity proteins that inactivate the colicins to avoid
- 902 committing suicide (Kleanthous, 2010). Microcins are low molecular weight peptides that have more diverse modes
- 903 of action and a broader range of activity than colicins (Yang et al., 2014). Some microcins have an antibiotic mode 904 of action or are used as precursors to synthetic antibiotics (Yang et al., 2014). One such bacteriocin petitioned for
- 904 of action or are used as precursors to synthetic antibiotics (Yang et al., 2014). One such bacteriocin petitioned for 905 inclusion on the National List of nonagricultural ingredients allowed for use in organic processing and handling was
- nisin (NOSB, 1995b). The NOSB did not recommend that it be added to the National List (NOSB, 1995a).
- 907

908 Bacteriophages

- Another newer strategy is to use viruses that infect bacteria, or bacteriophages (O'Sullivan et al., 2019; Wei et al.,
- 2019). Bacteriophages are the most abundant organisms on earth (O'Sullivan et al., 2019; Yusuf, 2018). These
- viruses attach and inject themselves into their specific bacterial host and replicate as a parasite, ultimately causing
- cellular death (O'Sullivan et al., 2019; Yusuf, 2018). This is referred to as the lytic cycle (O'Sullivan et al., 2019).
- 913 Phages are host-specific and are unable to propagate without a bacterial cell (O'Sullivan et al., 2019). Scientists
- have studied phages and their derivatives for *Listeria monocytogenes* (Misiou et al., 2018), *Salmonella spp.* (Wei et
- 915 al., 2019), and *E. coli* O157:H7 (Rozema et al., 2009) for their efficacy in reducing those foodborne pathogens.
- Pathogen reductions are generally within the 90-95% range, far short of the target 5-log reduction (Mahony et al.,
- 2011; O'Sullivan et al., 2019). Phages generally do not achieve sufficient target pathogen reduction to qualify as
- alternatives to pasteurization, but show promise as a preharvest intervention when used as part of an integrated
 pathogen program combined with various physical techniques, such as high-pressure processing (Mahony et al.,
- 2011; Misiou et al., 2018; O'Sullivan et al., 2019). The FDA has approved *Listeria* specific phages for use in meat
- and poultry products (21 CFR 172.785).

922 923 Essential Oils

- Essential oils are potential antimicrobial alternatives to ozone. We discuss essential oils as organic agricultural
- substances in further detail later in this report (see *Evaluation Question #11*, below). However, many of these
- biological active components also serve as flavors (Burt, 2004; FEMA Expert Panel, 2022). Nonagricultural
- 927 nonsynthetic flavors appear on the National List at 7 CFR 605(a)(12).
- 928

- 931 Various essential oils are effective antibacterials for various food applications (Burt, 2004; Laranjo et al., 2017;
- 932 Yusuf, 2018). Producers use approximately 300 essential oils commercially as flavors and fragrances (Burt, 2004;
- 933 Ríos, 2016). Farmers and ranchers use essential oils as biopesticides in organic crop and livestock production (Baker
- 834 & Grant, 2018; Chang et al., 2022; Rawat, 2021). However, essential oils are not yet a widely accepted material in

Evaluation Question #11: Provide a list of organic agricultural products that could be alternatives for this substance
 [7 CFR 205.600(b)(1)].

 $^{^{\}rm 4}$ Bacteriocins are toxins produced by bacteria that inhibit or kill other bacteria.

935 post-harvest handling (Chang et al., 2022; Laranjo et al., 2017). Essential oils are not explicitly included on the list 936 of allowed non-organic agricultural ingredients (7 CFR 205.606). As such, they would be required to be from 937 organic sources if used as ingredients or processing aids for products labeled as "organic" [7 CFR 205.301(b)] or 938 "100% organic" [7 CFR 205.301(a)]. 939 940 The European Pharmacopoeia identifies 29 different essential oils that have antimicrobial effects on bacteria (both 941 gram positive and gram negative), fungi, and yeast (Pauli & Schilcher, 2009). Scientists consider most of these 942 materials weak-to-moderate antimicrobials, and they are not consistently active across all targeted species of 943 foodborne pathogens (Pauli & Schilcher, 2009). As such, most would not achieve disinfection results comparable to 944 ozone. However, concentrating the active components of essential oils can increase their efficacy as antimicrobials. 945 The main foodborne pathogens studied for the antimicrobial efficacy of various essential oils are (Burt, 2004): 946 *Listeria monocytogenes* 947 Salmonella typhimurium • 948 Escherichia coli O157:H7 • 949 Shigella dysenteria • 950 Bacillus cereus • 951 Staphylococcus aureus • 952 Among the fungi studied are Aspergillus spp., Fusarium spp., Penicillium spp., and other mycotoxin-producing 953 954 species (Dwivedy et al., 2016; Pauli & Schilcher, 2009). In one study, scientists directly compared the antimicrobial 955 activity of ozone with various essential oils in preserving ancient Egyptian archeological objects from Aspergillus 956 spp. and other microorganisms responsible for decay. They concluded that the essential oils provided "aesthetically 957 acceptable" results with "negligible toxicity to human health and the environment" (Geweely, 2022). 958 959 While essential oils clearly demonstrate antimicrobial activity, their effects on microorganisms are usually weaker than those of synthetic compounds (Wińska et al., 2019). However, essential oils often work synergistically with 960 961 each other and with other preservation methods (Burt, 2004; Hyldgaard et al., 2012). Essential oil components also 962 have antioxidant activity (Lis-Balchin et al., 1998). ⁵ Essential oils do vary in quality and potency based on the 963 concentration of their biologically active components (Burdock, 2016; Burt, 2004). Isolating or concentrating the biologically active components of essential oils can improve the efficacy and reduce the variability of the results 964 965 (Lis-Balchin et al., 1998). However, consumer acceptance of the flavors of essential oils at concentrations sufficient 966 to reduce pathogens is a limitation to their practical application as an antimicrobial (Targino de Souza Pedrosa et al., 967 2021). 968 969 While a comparison of all the essential oils reported to have antimicrobial activity comparable to ozone is beyond 970 the scope of this report, we selected cinnamon oil, peppermint oil, and thyme oil as model essential oils to examine 971 based on the following criteria (NOP, 2024; US FDA, 2020): 972 (1) Commercial availability of organic sources identified through the Organic Integrity Database (OID). 973 (2) Available data and studies on essential oils' human health and environmental effects. 974 (3) Available scientific literature reviews that include an extensive range of uses and applications of essential 975 oils. 976 (4) In the cases of peppermint oil and thyme oil, the availability of peer-reviewed journal articles that directly 977 compare the efficacy of those essential oils with ozone. 978 (5) The essential oils selected are FDA GRAS. 979 980 We found that the available data and research rarely specified that the essential oils under review were organic. 981 Similarly, we found few studies of essential oil antimicrobial efficacy related directly to organic food processing. 982

983 **Commercial availability**

Many certified organic essential oils are currently available on the market. A keyword search of "essential oils" on the OID identified approximately 219 certified organic handlers (NOP, 2024). Additional keyword searches on the

986 OID for "cinnamon oil" yielded 54 certified organic handlers, "peppermint oil" yielded 141 certified organic

handlers, and "thyme oil" yielded 65 certified organic handlers (NOP, 2024). In total, we identified 239 handlers

that have at least one of the three specific essential oils used as models or that handle generic essential oils. Handling

operations may be distributors and not primary manufacturers. Furthermore, some handlers are certified by multiple

agents, with agents certifying different specific essential oils sold by a given operation.

991

⁵ An antioxidant is a substance that counteracts deterioration of food by inhibiting its oxidation.

992 **Cinnamon oil**

- 993 Cinnamon oil is extracted from the bark of trees from the genus Cinnamonium (Ravindran et al., 2004). Most 994 cinnamon in the world is from Cinnamonium cassia, also known as cassia (Madan & Kannan, 2004). Sri Lankan or 995 true cinnamon (C. zeylanicum also known as C. verum) accounts for most of the rest of the oil, which can also be 996 extracted from the leaves and twigs of this species (Ravindran et al., 2004). Another minor source is korintji or 997 Indonesian cinnamon (Cinnamonium burmanii) (Khan & Abourashed, 2010). Cinnamaldehyde—also known as 998 cinnamic aldehyde—is a flavonoid and secondary plant metabolite that makes up between 60-90% of cinnamon oil
- 999 and is the principal biologically active component (Dayananda et al., 2004). 1000
- 1001 Cinnamon oil from C. cassia is effective against a large number of yeasts, fungi, and bacteria (both gram-positive 1002 and gram-negative) including (Pauli & Schilcher, 2009):
 - Campylobacter jejeuni
 - *Candida albicans* •
 - E. coli O157:H7 •
 - Staphylococcus aureus •
 - Shigella spp. •

1009 Researchers studying different *Cinnamomum* species found that cassia oil was the most effective in inhibiting 1010 Salmonella spp., and cinnamon oil had the highest efficacy against B. cereus (Ezzaky et al., 2023). However, both 1011 oils were relatively ineffective against E. coli and S. aureus.

1012

1003

1004

1005

1006

1007

1008

1013 Scientists concluded that cinnamon oil was the most effective of 51 different essential oils against Pseudomonas 1014 aeruginosa, with an 85.8% reduction in growth, and Torulopsis utilis, with a 100% reduction in growth. Fasake et 1015 al. (2022) compared fresh-cut cauliflower (Brassica oleracea var. botrytis) treated with either ozonated water, 1016 cinnamon oil, oregano (Origanum spp.) oil, or left untreated, wrapped in modified atmosphere packaging, and refrigerated. The researchers reported that ozone and cinnamon oil each inhibited the total bacterial count (TBC) on 1017 the cauliflower stored for 21 days. The cauliflower with the ozonated water treatment had a slightly lower TBC than 1018 the one treated with cinnamon oil, but the difference was not statistically significant (Fasake et al., 2022). The TBC 1019 1020 for cauliflower treated with oregano oil was higher than ozonated water or cinnamon oil, but still lower than the 1021 untreated control (Fasake et al., 2022).

1022

1029

1030

1031

1023 Cinnamon oil combined with salt (sodium chloride) effectively inhibited the infection, growth, and aflatoxin 1024 production by Aspergillus flavus and A. glaucus grown on corn (Zea mays), but cinnamon oil alone was less 1025 effective (Chatterjee, 1989). Montes-Belmont and Carvajal (1998) concluded that cinnamon oil was the most 1026 effective of the 11 essential oils tested for control of A. flavus on corn without phytotoxicity.⁶ Other foodborne 1027 pathogens inhibited by cinnamon oil include (Gupta et al., 2008; G. Singh et al., 2007):

- 1028 Aspergillus flavus ٠
 - Aspergillus ochraceus
 - Aspergillus terreus
 - Penicillium citrinum •
 - Panicillium viridicatum
- 1032 1033 Bacillus sp. •
- 1034 Listeria monocytogenes •
- 1035 • E. coli sp.
- 1036 Klebsiella sp. •
- 1037 • Rhizomucor sp.
- 1038
- 1039 Cinnamon and its derivatives, including the essential oil, are FDA GRAS (21 CFR 180.20). The Joint FAO/WHO Expert Committee on Food Additives (JECFA) concluded that cinnamon derivatives do not pose food safety 1040
- 1041 concerns at the current estimated levels of intake (JECFA, 2001). While cases of acute toxicity are rare,
- 1042 pediatricians reported this occurring in young children either accidentally or intentionally ingesting relatively large 1043 amounts (Schwartz, 1990).
- 1044
- 1045 Cinnamon oil is used to control Varroa mites (Varroa jacobsoni) (Kraus et al., 1994), and American foulbrood
- 1046 (Paenibacillus larvae) (Gende et al., 2009) in bees (Apis mellifera). At the doses effective to control foulbrood
- 1047 (50 µg/ml), cinnamon oil was reported to be virtually non-toxic (Gende et al., 2009). However, a much higher

⁶ Phytotoxic: Toxic to plants.

1048 10% solution was fatal to almost 99% of the bees treated (Kraus et al., 1994). We found no evidence that cinnamon 1049 oil has adverse effects on aquatic organisms.

1051 **Peppermint oil**

1052 Processors extract mint oil from plants of the genus *Mentha* by steam distillation (Burdock, 2016; Denny &

Lawrence, 2007; Khan & Abourashed, 2010). The most common species used for the production of mint essential oils are corn mint (*Mentha arvense*), peppermint (*Mentha piperata*), and spearmint (*Mentha spicata*) (Denny &

Lawrence, 2007). Menthol is a simple monoterpenoid that is the primary active substance in peppermint oil and corn mint oil. Spearmint oils are often over 50% carvone (Lawrence, 2007).

1057

1050

1058 Peppermint oil inhibits the growth of many different bacteria, fungi, and yeasts (Khan & Abourashed, 2010; Pauli &

Schilcher, 2009; Shah & D'Mello, 2004). It is also an antiviral agent (Alankar, 2009). Ezzaky et al. (2023)
concluded that mint oil was the most effective against *E. coli* and *S. aureus* in a study comparing the efficacy of

essential oils in *Cinnamonium* spp, *Mentha* spp., and *Salvia* (sage) *spp*. Argawal et al. (2008) reported that of 30

1062 plant oils tested, peppermint oil showed the greatest inhibition of *C. albicans* after eucalyptus oil.

1063

Peppermint oil showed a synergistic effect with ozone treatment on the following microorganisms (Floare et al.,2023):

- Candida albicans
- E. coli
 - P. aeruginosa
- S. aureus
- 1070 *S. mutans*
- 1071

1066

1067

1068

1069

1072 The addition of peppermint oil increased the efficiency of ozone and decreased the effective exposure time of ozone 1073 from 120 seconds to 55 seconds (Floare et al., 2023). The inhibitory rates obtained by the mixture increased when 1074 compared with the inhibitory rates of ozone or essential oils when applied as single compounds (Floare et al., 2023). 1075 The essential oils increased the potency of the ozone (Floare et al., 2023).

1076

Peppermint oil and spearmint oil are FDA GRAS (21 CFR 182.200). Cornmint oil is also GRAS, based on a
declaration from the Flavors Extract Manufacturers Association Expert Panel (R. Smith et al., 2005). Some
individuals are allergic to mint (Tran et al., 2010; Woolf, 1999). Symptoms reported by allergic individuals include
the following (Malekmohammad et al., 2021; Tran et al., 2010; Woolf, 1999):

• contact dermatitis (itchy rash including from exposure to peppermint oil in lip balm)

- 1082 ataxia
- 1083 hot flashes
- 1084 drowsiness
- 1085 shortness of breath
 - abdominal pain
 - metabolic acidosis
 - hyperextension of the extremities
 - tremors
 - unconsciousness
- 1090 1091

1086

1087

1088

1089

Large doses of peppermint oil can be nearly fatal and can cause organ damage when ingested or injected (Behrends et al., 2005; Nath et al., 2012). Peppermint oil is frequently used in herbal medicines. Some patients receiving these therapeutics have reported drug interactions and side effects, including apnea or bronchial and/or laryngeal spasms (Malekmohammad et al., 2021). Peppermint oil is also contraindicated as herbal medicine in patients with bile duct obstruction, gall bladder inflammation, and liver disorders (Malekmohammad et al., 2021). We found no reports of adverse environmental impacts of peppermint oil.

1098

1099 The primary active substance in peppermint oil, menthol, has been widely studied for its effects on human health

1100 and non-target species (Hayes et al., 2007; Malekmohammad et al., 2021). Much of the research on the human

- health effects of menthol is related to its use as an additive to cigarettes. However, some research involves candies
- and personal care products such as toothpaste (Hayes et al., 2007; Malekmohammad et al., 2021). Menthol has a low
- 1103 potential for toxicity to humans (Hayes et al., 2007). While it is safely used in food, some sensitive people reported 1104 heartburn, irritation, contact dermatitis, slowed heartbeat (bradycardia), and abdominal pain (Malekmohammad et
- al., 2021). Menthol is commonly used to treat tracheal mites (*Acarapis woodie*) in honeybees (*Apis mellifera*).

1106 Scientists concluded that menthol had the greatest margin of safety for bees of all the essential oil isolates tested 1107 (Ellis & Baxendale, 1997).

1109 Thyme oil

1110 Processors extract thyme oil by water and steam distillation of the flowering tops of common thyme (*Thymus* 1111 vulgaris), creeping thyme (T. serpyllum), and red or Spanish thyme (Thymus zygis) (Burdock, 2016; Khan & 1112 Abourashed, 2010; Lawrence et al., 2002). The primary active constituent is thymol, a monoterpenoid phenol 1113 (Coimbra et al., 2022; Lawrence et al., 2002; Zarzuelo & Crespo, 2003). Other biologically active components

include linalool and p-cymene (Coimbra et al., 2022). 1114

1115

1108

1116 Scientists reported that thyme oil in aqueous suspension reduced the population of E. coli O157:H7 bacteria on

lettuce to a level not significantly different from the population reduction achieved by ozonated water (Singh et al., 1117

- 2002). In contrast, thyme oil was slightly, but significantly, less effective than ozonated water in treating baby 1118
- carrots inoculated with E. coli O157:H7 bacteria (Singh et al., 2002). Researchers concluded that the most effective 1119
- 1120 treatment was sequential washing with thyme oil, ozonated water, and aqueous chlorine dioxide (ClO₂) (Singh et al., 2002).
- 1121 1122

1123 While most studies of essential oils do not specify whether organic sources were used, we found data from one study

1124 of organic thyme. Organic thyme oil from four species in a chitosan film inhibited the growth of the foodborne

1125 pathogens Serratia marcescens, Listeria innocua, and Alcaligenes faecalis. However, it was ineffective in inhibiting

1126 Enterobacter amnigenus (Ballester-Costa et al., 2016). Scientists also demonstrated that thyme oil inhibits the

growth of methicillin-resistant S. aureus at a relatively low dose (Shukr & Metwally, 2014). 1127

1128

1129 In another study, scientists treated minced pork inoculated with four subspecies of Salmonella with thyme oil and

1130 refrigerated it for 15 days (Boskovic et al., 2017). The thyme oil treatment reduced the pathogens at all levels;

1131 however, the most effective dose of 0.9% had a flavor that was unacceptable to the professional food science sensory panel (Boskovic et al., 2017).

1132 1133

1134 Thyme oil extracted from Thymus vulgaris, T. serpyllum, and T. zygis var. gracilis is FDA GRAS (21 CFR 182.20). 1135 We found no evidence of thyme oil reported as a food allergen or indicated with other adverse human health effects.

1136

1137 Honeybees tolerate thyme oil with few fatalities when treated for Varroa mites (Varroa destructor) at doses between 6 and 30 grams (g) in powdered form over a period of 8 to 49 days (Imdorf et al., 1999). Efficacy increased with 1138 1139

both dose and duration (Imdorf et al., 1999). Honey bees had a 50% mortality (LC_{50}) when exposed in a Petri dish to a concentration of 8.05 µL thymol in an alcohol solution for 72 hr (Damiani et al., 2009). Honeybees treated with 1140

12.5 and 25 g of thymol powder for 28 days suffered no significant mortality losses, although losses were not 1141

1142 quantified (Calderone et al., 1997). Queen bees appear to be more susceptible to thymol toxicity than worker bees

(Whittington et al., 2000). Thyme oil is not toxic to the beneficial predator Atheta coriaria, known as the rove beetle 1143

- 1144 (Echegaray & Cloyd, 2012).
- 1145

1146 Evaluation Question #12: Describe if there are any alternative practices that would make the use of this substance unnecessary [7 U.S.C. 6518(m)(6)]. 1147

- 1148 Heat is one of the oldest practices used to reduce microbial activity in food (Potter & Hotchkiss, 1998). Thermal
- technologies are defined as those that use temperatures in excess of 80 °C (176 °F) to reduce foodborne pathogens to 1149
- 1150 safe levels (Chiozzi et al., 2022). However, heat degrades most fresh fruits and vegetables (Kader, 2002). Therefore,
- 1151 thermal technologies are not a practical alternative to antimicrobial treatment by ozone for these applications. Non-
- thermal processing refers to techniques that operate at temperatures less than 30 °C (86 °F) (Chiozzi et al., 2022). 1152
- 1153 Ozonation is a non-thermal process, along with ultraviolet (UV) light, ultrasound, pulsed electric fields, and high
- hydrostatic pressure processing (Chiozzi et al., 2022; Rawson et al., 2011). Pulsed electric fields and cold plasma are 1154
- proposed as other non-thermal options (Chiozzi et al., 2022; Režek Jambrak et al., 2018), but they are omitted 1155
- 1156 because, at present, they do not appear to be in widespread commercial use and their status in the organic standards 1157 is not clear. These alternative methods are all in commercial use at present and may be used to disinfect foods that
- 1158 are not appropriate for thermal processing (Chiozzi et al., 2022).

1159

1160 **Ultraviolet light**

UV light has germicidal properties between 200-280 nm in the electromagnetic spectrum, known as UV-C 1161

- (Choudhary & Bandla, 2012). The FDA does not classify UV as "ionizing radiation" at 21 CFR 179.26, which is 1162
- prohibited for use in organic production and handling [7 CFR 205.105(f)]. The FDA allows UV to be used on food 1163
- 1164 and food products for surface microorganism control, to sterilize water used in food production, and to reduce
- 1165 human pathogens and other microorganisms in juice products [21 CFR 179.39(b)]. The FDA specifies that the UV

light is from low-pressure mercury lamps emitting 90% of the emission at a wavelength of 253.7 nm

1167 [21 CFR 179.39(a)]. However, the FDA regulations specify UV used to treat food, food products, and water used as

a food ingredient to be generated without ozone production [21 CFR 179.39(b)]. Ozone is produced by UV light

1169 from oxygen under standard temperature and pressure exposed to wavelengths below 240 nm on the electromagnetic

- 1170 spectrum (Horvath et al., 1985; SCHEER, 2017).
- 1171

1175 1176

1177

1178

1179

Microbial inactivation and protein damage are caused by UV-C light being absorbed by the organism's DNA
(Chiozzi et al., 2022). The waves cause the formation of DNA photoproducts that result in mutation and cell death
(Chiozzi et al., 2022). Applications of UV light for food disinfection include:

- juices (Basak et al., 2023; Koutchma et al., 2016; Rawson et al., 2011)
 - fresh fruits and vegetables (Bermúdez-Aguirre & Barbosa-Cánovas, 2013; Chiozzi et al., 2022)
 - milk and dairy products (Chawla et al., 2021; Chiozzi et al., 2022)
 - meat and poultry products (Chiozzi et al., 2022)
 - nuts (Gyawali et al., 2024)

1180 1181 The efficacy of UV-C is a function of radiant energy and exposure time, with greater intensity and longer exposure 1182 times causing more cell death (Bermúdez-Aguirre & Barbosa-Cánovas, 2013; Chiozzi et al., 2022; Koutchma et al., 2016). Microorganisms of concern also vary in their susceptibility, with gram negative bacteria being more sensitive 1183 1184 (Bermúdez-Aguirre & Barbosa-Cánovas, 2013). Results vary widely by food type, target organism, radiant energy, 1185 and exposure time (Bermúdez-Aguirre & Barbosa-Cánovas, 2013; Chiozzi et al., 2022; Noci, 2017). Most studies reported a greater than 1- but less than 5-log reduction in the organism of public health concern with UV-C as the 1186 1187 only treatment, with some studies reporting less than a 1-log reduction (Chiozzi et al., 2022; Koutchma et al., 2016; 1188 Noci, 2017).

1189

1194

1190 One disadvantage is that UV-C can disinfect only transparent foods and the food surface of opaque foods; it is

ineffective where target organisms are shielded from the light (Bermúdez-Aguirre & Barbosa-Cánovas, 2013; Noci,
2017). Another disadvantage is that UV can reduce vitamin C (ascorbic acid) content in juices (Basak et al., 2023;
Chiozzi et al., 2022; Koutchma et al., 2016).

1195 Ultrasound

1196 Ultrasound is another physical process used with modest success in controlling various spoilage organisms (Chiozzi

et al., 2022; Režek Jambrak et al., 2018; Singla & Sit, 2021; Welti-Chanes et al., 2017). The term "ultrasound" refers to acoustic waves that are above the maximum frequency audible to human, which is approximately 20 kHz

(Lacefield, 2014). Food treated with ultrasound is divided into two categories: low intensity with low energy and

frequency higher than 100 kHz and high intensity with high energy and low frequency between 20 and 100 kHz

1201 (Welti-Chanes et al., 2017). Ultrasound's mode of action is known as "cavitation" or the formation of gas bubbles

1202 caused by the sound frequencies (Lacefield, 2014). Cavitation acts on microbes by removing the cells from the food

- 1203 surface, rendering them less resistant to sanitizers (Arvanitoyannis et al., 2017).
- 1204

Ultrasound is the most commonly used medical diagnostic tool in the 21st century, and is considered one of the
 safest for humans (Lacefield, 2014). Most food industry applications are low-intensity and used in inspections for
 quality and detection of foreign matter (Welti-Chanes et al., 2017). High-intensity ultrasound was first used
 commercially for emulsification in 1960, with food applications among the first group of industrial applications
 (Mason, 2003). Manufacturers of food-grade ultrasound transducers for cleaning and sanitation include Parsonics

1210 (Parsonics, 2024), Kemet (Kemet, 2024), Christeyns (Christeyns, 2024), and Hielscher (Hielscher, 2024).

12111212 High-pressure processing

Processors use high-pressure processing (HPP), also known as high hydrostatic pressure (HHP) processing to inactivate microorganisms in juices, milk and dairy products, fruit and vegetable preparations, and meat and poultry products (Aganovic et al., 2021; Cano-Lamadrid & Artés-Hernández, 2022; Chiozzi et al., 2022). For this method, processors put food products in packaging that can withstand high pressure and subject them to hydrostatic pressure between 100 and 1,000 MPa and temperatures between 0 °C and 120 °C (32 °F-248 °F) (Aganovic et al., 2021).

1218 Efficacy varies depending on characteristics of the food including (Aganovic et al., 2021):

- 1219 pH 1220 • mo
 - moisture content
 - physical composition
 - entrapment of microorganisms in the food matrix
- 1223

1221

1222

1224The most common application of HPP is decontamination of meat and meat products (Huang et al., 2017). The US1225Food Safety Inspection Service (US FSIS) recognizes that HPP can achieve a 5-log reduction in *E. coli* O157:H7

and Salmonella in ready-to-eat meat and poultry products, but notes that some strains are pressure-resistant (US 1226 1227 FSIS, 2012). For that reason, inspection personnel are required to verify that the Hazard Analysis and Critical 1228 Control Point (HACCP) plan is effective in achieving the 5-log reduction (US FSIS, 2012). Other pathogenic strains 1229 of E. coli in beef may be controlled, as well (Sheen et al., 2015). 1230 1231 Fruit and vegetable juice matrices are particularly amenable to HPP and account for a large number of commercial 1232 applications of this technology (Huang et al., 2017; Roobab et al., 2021). HPP treated carrot juice had sensory 1233 characteristics of color, appearance, aroma, taste, and overall acceptability that were more similar to fresh juice 1234 when compared to thermally-treated juice, with approximately the same level of microbial inactivation (Zhang et al., 1235 2016). Compared with UV light and thermal processing, HPP shows excellent retention of vitamin content in 1236 various fruit and vegetable juices, particularly vitamin C (Koutchma et al., 2016; Rawson et al., 2011). Thermal 1237 processing is sufficient, as long as the processing controls are documented (US FDA, 2004). HPP is not likely to 1238 require prior FDA approval because it is a physical process and not a chemical additive or exposure to radioactive 1239 substances, unlike ionizing radiation or chemical treatment, but it still needs to be verified and validated by a 1240 process authority with expertise in food safety (US FDA, 2004). 1241 1242 Processors can also use HPP in wine production (Bañuelos et al., 2020). While ozone is a substitute for sulfur 1243 dioxide and other sulfiting agents, HPP also shows promise as a substitute for no-sulfite-added wines (Bañuelos et 1244 al., 2020). 1245 1246 Dairy processors first used HPP to preserve unrefrigerated fluid milk in 1899 (Hite, 1899). Sensory and quality 1247 panelists have rated HPP treated milk and plant-based milk substitutes as having superior sensory quality and 1248 nutritional content compared to thermally processed versions. Researchers also reported that the HPP treated milk 1249 and plant-based milk substitutes achieved comparable levels of pathogen reduction and shelf stability compared to thermally processed versions (Andrés et al., 2016; Goyal et al., 2013; Huppertz, 2010; Rendueles et al., 2011). 1250 1251 However, dairy processors have been reluctant to replace thermal pasteurization with HPP pasteurization for various 1252 reasons (e.g., cost, regulatory uncertainty, and lack of familiarity with the technology) despite documented benefits 1253 in quality and functionality (Huppertz, 2010). 1254 1255 The most frequently mentioned barrier to adoption is the cost. HPP equipment is relatively expensive to purchase 1256 when compared with alternative antimicrobial technologies (Aganovic et al., 2021; Chiozzi et al., 2022; Huppertz, 1257 2010). HPP is also more scale-limited than thermal processing because it requires batch processing, and the largest vessels reported to withstand the high pressure have a 600 L (~160 gal) capacity (Huppertz, 2010). The regulations 1258 1259 of HPP are also not as clearly defined as with thermal technology, leading to some resistance to its adoption (Huang 1260 et al., 2017). Processors in the U.S. that use HPP are responsible for the verification and validation of its efficacy 1261 (21 CFR 120.25). High-pressure processing is not likely to require FDA prior approval, but any such assumption 1262 should be verified by the process authority specified in the HACCP Plan (US FDA, 2004). 1263

1264 1265

1268

1269

1270

1271

1272

Authors

The following individuals participated in research, data collection, writing, editing, and/or final approval of thisreport:

- Brian Baker, Principal, Belcairn Concerns LLC
- Peter O. Bungum, Research and Education Manager, OMRI
- Colleen E. Al-Samarrie, Technical Research Analyst, OMRI
- Ashley Shaw, Technical Research and Administrative Specialist, OMRI
- All individuals comply with Federal Acquisition Regulations (FAR) Subpart 3.11—Preventing Personal Conflicts of
 Interest for Contractor Employees Performing Acquisition Functions.

1275

1277

Appendix A

1278 Sources of Organic Essential Oils

1279Table 3 contains a list of USDA NOP certified organic essential oil handlers downloaded from the USDA Organic1280Integrity Database (OID) on November 4, 2024. The database is a union of the search for "Essential oils",1281"Cinnamon oil", "Peppermint oil", and "Thyme oil" certified as organic under the handler scope. Handling1282operations may be distributors and not primary manufacturers. Some operations are certified by more than one1283agent, with certification agents certifying different essential oils handled by the same handler.

1284 1285

Table 3: Sources of Organic Essential Oils

Operation name ^a	Certified essential oil(s)	Certifier ^b	Country ^c
A G Organica Private Limited	Cinnamon oil, Peppermint oil, Thyme oil	ECO	India
A To Z Beauty, Llc Dba Cliganic	Peppermint oil, Essential oils (other)	QAI	USA
AAC Natural Products Private Limited	Cinnamon oil, Peppermint oil, Thyme oil	MAYA	India
Aadroit Indulgence Pvt. Ltd.	Cinnamon oil, Peppermint oil, Thyme oil	MAYA	India
Aaron Thomas Company, Inc.	Cinnamon oil	QAI	USA
Abdullah Inan-inan Tarim Ürünleri Ticaret	Thyme oil	ECO	Turkey
Actionpak Inc.	Peppermint oil, Essential oils (other)	PCO	USA
Agrinsa Agroindustrial S.a.	Essential oils (other)	OIA	Argentina
Agropecuária Gavião Ltda	Essential oils (other)	IBD	Brazil
Al Dahlia For Import & Export	Peppermint oil, Thyme oil, Essential oils (other)	BIOI	Egypt
All-One-God-Faith, Inc. Dba Dr. Bronner's	Cinnamon oil, Peppermint oil	OTCO	USA
Magic Soaps, Dba Dr. Bronner's			
Alpha Research & Development Ltd	Peppermint oil, Thyme oil	ECO	USA
Amrita Aromatherapy, Inc.	Essential oils (other)	OTCO	USA
Apple Food Industries	Peppermint oil	ECO	India
Arasa Gida Perakende Yatirim Ve Isletme San.	Essential oils (other)	OIA	Turkey
Tic. A.s	, , , , , , , , , , , , , , , , , , ,		, , , , , , , , , , , , , , , , , , ,
Aroma Source Sarl Sarl	Essential oils (other)	ECO	Madagascar
Aromatics Llc	Essential oils (other)	MTDA	USA
Aryan Food Ingredients Ltd	Cinnamon oil, Peppermint oil, Thyme oil	MAYA	India
Aryan International Fzc	Cinnamon oil, Peppermint oil, Thyme oil	BIOI	UAE
ATS Trade Llc	Essential oils (other)	OIA	Argentina
Auburndale Plant Holdings, Llc	Peppermint oil	OTCO	USA
Australian Botanical Products	Peppermint oil, Essential oils (other)	ACO	Australia
Ayanda African Oils	Essential oils (other)	ECO	South
		200	Africa
Azafran Innovacion Ltd.	Cinnamon oil, Peppermint oil	ECO	India
Azure Farm	Peppermint oil	OTCO	USA
B D Aromatics Pvt. Ltd.	Peppermint oil	ECO	India
B&B Family Farm	Essential oils (other)	WSDA	USA
B&P Via Pack Brasil Produtos Alimentícios	Essential oils (other)	IBD	Brazil
Ltda			Diali
Bigaflor Sa	Essential oils (other)	ECO	Tunisia
Bio Extracts (pvt) Ltd.	Essential oils (other)	CUC	Sri Lanka
Bio- Logic Sarl	Essential oils (other)	ECO	Madagascar
Biolandes Maroc Sarl	Essential oils (other)	ECO	Morocco
Bleroch S.a.	Essential oils (other)	OIA	Uruguay
Bonnie House Co., Ltd	Peppermint oil, Essential oils (other)	ACO	Taiwan
Bonnie House Pty Ltd	Peppermint oil, Essential oils (other)	ACO	Australia
Botanic Healthcare Llc	Cinnamon oil, Peppermint oil	ONE	USA
Botanika Tarim Ürünleri Kozmetik Gida Yag	Thyme oil	ECO	Turkey
San. Tic. Ltd. Sti.	ingine on	Leo	runey
Bothota Organic Growers	Cinnamon oil	CUC	Sri Lanka
Brasil Citrus Indústria E Comércio Ltda	Essential oils (other)	IBD	Brazil
Bulk Cart (the)	Peppermint oil, Thyme oil	ONE	USA
C & A Service, Inc Abington, Md	Peppermint oil, Thyme oil	WFCFO	USA
Callisons, Inc.	Peppermint oil	OTCO	USA
Calosur Industrial S.a.	Essential oils (other)	OIA	Uruguay
Celebration Holdings Private Limited	Peppermint oil, Essential oils (other)	CUC	Sri Lanka
Charasmatic Trading & Consulting	Cinnamon oil, Peppermint oil, Thyme oil	OTCO	USA

Operation name ^a	Certified essential oil(s)	Certifier ^b	Country ^c
Clear Petroleum S.a.	Essential oils (other)	OIA	Argentina
Colombo Export & Import Agencies (pvt) Ltd	Essential oils (other)	CUC	Sri Lanka
Cosmetik Lab	Essential oils (other)	ECO	Morocco
Cupi Essential	Essential oils (other)	BIOI	Albania
Cvista, Llc	Essential oils (other)	OC	USA
Daily Harvest, Inc.	Peppermint oil	QAI	USA
Delbia Do Company	Essential oils (other)	NFC	USA
Ditco Dis Ticaret Gida San. Ltd. Sti.	Thyme oil	ECO	Turkey
Earthstar Farms, Llc	Essential oils (other)	CDA	USA
Ecocitrus - Cooperativa Dos Citricultores Ecologicos Do Vale Do Cai Ltda.	Essential oils (other)	IBD	Brazil
Ecodab Gida Tarim Kozmetik Yag Yem San.ve Tic.ltd.sti.	Thyme oil	ECO	Turkey
Elaga Sa	Essential oils (other)	ECO	Burundi
Elmar Limité	Essential oils (other)	ECO	Bosnia and
			Herzegovina
Eoas Organics (pvt) Ltd	Essential oils (other)	CUC	Sri Lanka
Espar S.r.l.	Essential oils (other)	OIA	Argentina
Essenceworks Pty Ltd	Thyme oil, Essential oils (other)	ACO	Australia
Ethereal Ingredients Private Limited	Cinnamon oil, Peppermint oil, Thyme oil	IBD	India
Excellentia Flavours Llc Dba Excellentia International	Peppermint oil, Thyme oil	OTCO	USA
Expo Ceylon	Essential oils (other)	CUC	Sri Lanka
Extracts-unlimited, Llc	Peppermint oil, Thyme oil	OTCO	USA
Fairoils Madagascar Sarl	Essential oils (other)	ECO	Madagascar
Fdb Agroexport S.a.	Essential oils (other)	OIA	Argentina
Filaroma Ltd	Cinnamon oil, Peppermint oil	ECO	Mauritius
Firmenich Inc	Peppermint oil	ECO	USA
Fitzgerald's Organic Farm	Essential oils (other)	WSDA	USA
Flatiron Fields Llc	Essential oils (other)	WSDA	USA
Flavor Producers Llc	Peppermint oil	OTCO	USA
Flavorchem Corporation	Peppermint oil	QAI	USA
Flavorfocus, Llc Dba Brookside Flavors & Ingredients	Peppermint oil	OTCO	USA
Floribis Sarl	Essential oils (other)	ECO	Madagascar
Forest Farmstead	Essential oils (other)	WSDA	USA
Fragrant Garden Sa	Essential oils (other)	ECO	Madagascar
Fuerte Del Bañado S.a.	Essential oils (other)	OIA	Argentina
G R Davis Pty Ltd	Essential oils (other)	ACO	Australia
Galowin S.a.	Essential oils (other)	OIA	Uruguay
Gie Targanine	Essential oils (other)	ECO	Morocco
Global Essence, Inc.	Peppermint oil, Thyme oil	QAI	USA
Going Natural S.r.l.	Essential oils (other)	OIA	Argentina
Gold Coast Ingredients, Inc.	Cinnamon oil, Peppermint oil, Thyme oil	QAI	USA
Golden Grove Naturals Pty Ltd	Peppermint oil, Essential oils (other)	ACO	Australia
Grain Millers, Inc.	Peppermint oil	OTCO	USA
Green Mountain Flavors, Inc.	Cinnamon oil, Peppermint oil	OTCO	USA
Greenleaf Extractions Pvt Ltd	Peppermint oil	BIOI	India
H2ea Sarl	Essential oils (other)	ECO	Morocco
Halilovic D.o.o.	Essential oils (other)	ECO	Bosnia and
		IDE	Herzegovina
Hangzhou Natur Foods Co., Ltd.	Essential oils (other)	IBD	China
Hashem Brothers For Essential Oils And Aromatic Products	Peppermint oil	CUC	Egypt
Hddes Extracts (pvt) Ltd	Cinnamon oil, Peppermint oil, Thyme oil, Essential oils (other)	CUC	Sri Lanka
Ideal Providence Farm Sole Propritorship	Essential oils (other)	ECO	Ghana
Il Health & Beauty Natural Oils Co., Inc.	Peppermint oil, Thyme oil, Essential oils (other)	ONE	USA
Imed Us Lle	Peppermint oil	QAI	USA
Inducitrica S.a.	Essential oils (other)	OIA	Argentina
Indus Cosmeceuticals Pvt. Ltd.	Cinnamon oil, Peppermint oil, Thyme oil,	ECO	India
	Essential oils (other)		

Operation name ^a	Certified essential oil(s)	Certifier ^b	Country ^c
Intercit Inc Dba Firmenich	Peppermint oil	ECO	USA
Intraflavors	Essential oils (other)	ECO	Madagascar
Jall - Extração E Comercialização De Óleos Essenciais Ltda (aka Oleos Essenciais)	Essential oils (other)	IBD	Brazil
Jardin Du Soleil	Essential oils (other)	WSDA	USA
Jedwards International, Inc.	Peppermint oil	QAI	USA
Joh. Vögele Kg	Peppermint oil, Thyme oil	ECO	Germany
Jsh Farms, Inc. Dba Sunwest Ingredients	Essential oils (other)	ODA	USA
Kerry Ingredients & Flavours	Peppermint oil, Thyme oil	OTCO	USA
La Moraleja S.a.	Essential oils (other)	OIA	Argentina
Labbeemint, Inc.	Essential oils (other)	WSDA	USA
Laboratorio Elea Phoenix S.a.	Essential oils (other)	OIA	Argentina
Lake Alfred Holdings, Llc Dba Florida Caribbean Distillers Lake Alfred, Llc	Peppermint oil	OTCO	USA
Las Frutas Global Gida San. Ve Tic. Ltd. Sti.	Peppermint oil, Thyme oil	ECO	Turkey
Latin Lemon S.a.	Essential oils (other)	OIA	Argentina
Lavender Hill Farm	Essential oils (other)	WSDA	USA
Lebermuth Company (the), Inc.	Peppermint oil, Thyme oil	OTCO	USA
Lemur International, Inc	Essential oils (other)	WFCFO	USA
Lermond Company (the), Llc	Peppermint oil	OTCO	USA
Lihini Nature Products (pvt) Ltd	Essential oils (other)	CUC	Sri Lanka
Litoral Citrus S.a.	Essential oils (other)	ECO	Argentina
Lotus Brands, Inc	Essential oils (other)	WFCFO	USA
M3r International Llc	Essential oils (other)	OIA	Argentina
Mada Perfect Choice (mapec)	Essential oils (other)	ECO	Madagascar
Madamanag Sarl	Essential oils (other)	ECO	Madagascar
Makingcosmetics Inc.	Peppermint oil, Essential oils (other)	WSDA	USA
Mane Kancor Ingredients Private Ltd	Peppermint oil	ECO	India
Maple Holistics Llc	Essential oils (other)	NFC	USA
Marshall's Flavor House, Inc. Dba Avron Resources	Peppermint oil, Thyme oil	OTCO	USA
Matha Exports International Llp	Peppermint oil, Thyme oil	ECO	India
Mava Sa Société Anonyme	Essential oils (other)	ECO	Madagascar
Meabeauty	Peppermint oil	ECO	Tunisia
Mel-co	Essential oils (other)	OC	USA
Metarom Usa, Llc	Peppermint oil	OTCO	USA
Milky Way Trading Dba Get Natural Essential Oils	Peppermint oil, Thyme oil, Essential oils (other)	РСО	USA
Millot Aromatiques Bio	Essential oils (other)	ECO	Madagascar
Moksha Lifestyle Products	Cinnamon oil, Peppermint oil, Thyme oil	MAYA	India
Moksha Organics	Cinnamon oil, Peppermint oil, Thyme oil	ECO	India
Morechem Co., Ltd.	Peppermint oil	CUC	Korea (the
		-	Republic of)
Morning Myst Botanics	Essential oils (other)	WSDA	USA
Most Wise International Limited	Peppermint oil	CUC	Hong Kong
Mountain Valley Organics, Llc Dba Mountain Valley Botanics Dba Mountain Valley Garlic	Essential oils (other)	WSDA	USA
Mudar India Exports	Peppermint oil	CUC	India
Nap Naturally Australian Products Pty Ltd	Essential oils (other)	ACO	Australia
Nathan's Naturals Llc	Essential oils (other)	WSDA	USA
Natural Farms Llc	Essential oils (other)	OIA	Argentina
Naturally Australian Products (nap), Inc. Dba Nap Global Essentials	Cinnamon oil, Peppermint oil	OTCO	USA
Navada Imports, Llc	Thyme oil	OTCO	USA
Neikim S.a.	Essential oils (other)	OIA	Uruguay
New Directions Australia	Essential oils (other)	ACO	Australia
Niche Naturals Llc	Essential oils (other)	OIA	USA
Nisarga Biotech Pvt. Ltd.	Peppermint oil	ECO	India
Nishant Aromas Private Limited	Peppermint oil	CUC	India
	Peppermint oil	OTCO	USA
Norwest Ingredients, Llc			
Norwest Ingredients, Llc Noushig, Inc. Dba Amoretti Now Canada (division Of Puresource	Peppermint oil Peppermint oil	OC ECO	USA Canada

Operation name ^a	Certified essential oil(s)	Certifier ^b	Country ^c
Now Foods. Inc.	Peppermint oil, Essential oils (other)	QAI	USA
Nutpro S.r.l.	Essential oils (other)	ŌIA	Argentina
Nutrin S.a.	Essential oils (other)	OIA	Argentina
Oc Flavors, Llc Dba Mosaic Flavors	Peppermint oil	QAI	USA
Oh, Oh Organic, Inc.	Peppermint oil	O TCO	USA
Onsibon S.a.	Peppermint oil, Essential oils (other)	OIA	Argentina
Organic Botanicals, Llc	Essential oils (other)	WSDA	USA
Organic India Private Limited	Peppermint oil	CUC	India
Organic Infusions Inc	Cinnamon oil, Thyme oil	OC	USA
Organic Suppliers S.r.l	Essential oils (other)	OIA	Argentina
Origines Sarl	Essential oils (other)	ECO	Madagascar
Paclantic Naturals Llc.	Peppermint oil	ECO	USA
Panisal S.a.	Essential oils (other)	OIA	Uruguay
Pearl Banyan Capitol Llc Dba Banyan	Cinnamon oil	QAI	USA
Botanicals Formerly Known As Banyan Trading Co			
Pehuajo Prome S.a.	Essential oils (other)	OIA	Argentina
Phalada Agro Research Foundations Pvt. Ltd.	Peppermint oil	CUC	India
Phoenix Flavors, Llc	Cinnamon oil, Thyme oil	OTCO	USA
Pikes Peak Organic Manufacturing	Essential oils (other)	WFCFO	USA
Plant Lipids Private Limited	Cinnamon oil	BIOI	India
Plantus Industria E Comércio De Óleos Extratos E Saneantes Ltda	Essential oils (other)	IBD	Brazil
Plenty Foods Pty Ltd	Essential oils (other)	ACO	Australia
Pompeii Street Soap Co.	Essential oils (other)	PCO	USA
Positively Aromatic, Llc	Essential oils (other)	WSDA	USA
Proagri Solutions Llc	Cinnamon oil, Peppermint oil	OTCO	USA
Pt. Tripper Nature	Essential oils (other)	CUC	Indonesia
Pure Essential Oils & Herbs	Peppermint oil, Thyme oil, Essential oils (other)	BIOI	Egypt
Purple Path Farm	Essential oils (other)	WSDA	USA
Quantum Fulfillment And Support Llc	Essential oils (other)	NFC	USA
Quintis Sandalwood Pty Ltd	Essential oils (other)	ACO	Australia
Rakesh Products	Cinnamon oil, Peppermint oil, Thyme oil	CUC	India
Rakesh Sandal Industries	Cinnamon oil, Peppermint oil, Thyme oil	ECO	India
Randriampenomaro Harimanana	Essential oils (other)	ECO	Madagascar
Reliable Products Inc. Dba Reliable Products Inc. / Pure Farms Organic	Thyme oil	OTCO	USA
Reroot Organic Pvt.ltd	Peppermint oil	ECO	India
Robertet, Inc.	Peppermint oil	OTCO	USA
Rocky Mountain Oils	Essential oils (other)	UDAF	USA
Romonti, Inc.	Essential oils (other)	WFCFO	USA
S.a. San Miguel A.g.i.c.i. Y F	Essential oils (other)	OIA	Argentina
S.a. Treated Poles & Timber T/a Windy Ridge	Essential oils (other)	ECO	South
Oils Cc	Essential ons (other)	LCO	Africa
S.a. Veracruz	Essential oils (other)	OIA	Argentina
Santis Sarl	Essential oils (other)	ECO	Morocco
Shemen Tov Corp. Dba Chandeau Oils	Peppermint oil, Thyme oil	OTCO	USA
Sigma Services Corporation - Zion	Essential oils (other)	QAI	USA
South American Grain S.a.	Essential oils (other)	OIA	Argentina
South American Orani S.a. Soyatech Pty Ltd	Essential oils (other)	ACO	Australia
Stabril S.a.	Essential oils (other)	OIA	Uruguay
Statin S.a. Sterling Speciality Ingredients Llc	Essential oils (other)	OIA	USA
Sugrain S.a.	Essential oils (other)	OIA	Uruguay
Sunatura Exports Private Limited	Cinnamon oil, Peppermint oil, Thyme oil	CUC	India
Sundale S.a.	Essential oils (other)	OIA	Uruguay
Sunflag Agrotech 2	Peppermint oil	MAYA	India
Suffrag Agroeen 2 Sustainable Botanicals International	Peppermint oil, Thyme oil	NFC	USA
Switch Supply Pty Ltd	Cinnamon oil, Peppermint oil, Essential oils (other)	ACO	Australia
Tech-vina Joint Stock Company	Essential oils (other)	CUC	Viet Nam
Tecnodesierto S.a.	Essential oils (other)	OIA	
rechouesierto 5.a.	Essential ons (other)	UIA	Argentina

Operation name ^a	Certified essential oil(s)	Certifier ^b	Country ^c
Ten Days Manufacturing Dba Daily	Essential oils (other)	OC	USA
Manufacturing			
Tks Co-pack Manufacturing, Llc	Essential oils (other)	UDAF	USA
Topical Pharmaceuticals Inc	Peppermint oil	ECO	USA
Tribal Medicinals	Peppermint oil	ECO	India
Trustee For Hornshaw Family Trust (the)	Essential oils (other)	ACO	Australia
Tsp Agro S.a.	Essential oils (other)	OIA	Argentina
Türer Tarim Ve Orman Ürünleri Ith. Ihr. San. Ve	Thyme oil	ECO	Turkey
Tic. Ltd. Sti.			
Uncle Harry's Natural Products	Essential oils (other)	WSDA	USA
Ungerer And Company	Peppermint oil	OTCO	USA
Ute Bv S.a.	Essential oils (other)	OIA	Argentina
Uyar Tarim Ürünleri Gida San. Ve Tic. A.s.	Thyme oil	BIOI	Turkey
Vicente Trapani S.a.	Essential oils (other)	OIA	Argentina
Vietnam Staraniseed Cassia Manufacturing And	Cinnamon oil, Essential oils (other)	CUC	Viet Nam
Exporting Joint Stock Company (vina Samex .,			
Jsc)			
Vital Mark Pty Ltd	Essential oils (other)	ACO	Australia
Vlakbult Farming T/a Highland Essential Oils	Thyme oil	ECO	South
Vlakbult Plaas Boerdery Pty Ltd			Africa
Wee Hoe Cheng Chemicals Pte Ltd	Essential oils (other)	CUC	Singapore
Wholesale Botanics, Inc.	Essential oils (other)	ONE	USA
Wishbone Organics Inc	Essential oils (other)	OIA	USA
Wishbone S.r.l.	Essential oils (other)	OIA	Argentina
Zara Voyages Sarl	Essential oils (other)	ECO	Madagascar

^aOperation names may be truncated. Note that some essential oils represented as certified organic under the USDA

1288 NOP standard may be produced by standards other than the USDA NOP and recognized as equivalent under an

international arrangement before it is repackaged under the supervision of a USDA Accredited Certifying Agent.

^bUSDA Accredited Certifying Agents:

- 1292 [ACO] ACO Certification Ltd.
- 1293 [AI] Americert International
- 1294 [BAC] BioAgriCert
- 1295 [BCS] Kiwa BCS Öko-Garantie GmbH
- 1296 [BIOI] Bio.Inspecta
- 1297 [CAAE] Servicio de Certificación CAAE S.L.U.
- 1298 [CCOF] CCOF
- [CDA] Colorado Department of Agriculture
- 1300 [CERES] CERES
- 1301 [CMEX] Certificadora Mexicana de Productos y Procesos Ecologicos SC
- 1302 [CUC] Control Union Certifications
- 1303 [ECO] Ecocert SAS (formerly Ecocert SA)
- 1304 [IBD] IBD Certifications
- 1305 [IDA] Idaho Department of Agriculture
- 1306 [IDALS] Iowa Department of Agriculture and Land Stewardship
- 1307 [IMOC] IMOcert Latinoamerica LTDA
- 1308 [LETIS] LETIS S.A.
- [MAYA] Mayacert S.A.
- [MTDA] Montana Department of Agriculture
- 1311 [MOSA] Midwest Organic Services Association, Inc.
- 1312 [NFC] Natural Food Certifiers
- 1313 [OEFFA] Ohio Ecological Food and Farm Association
- 1314 [OCI] OneCert, International Private Limited
- 1315 [ONE] OneCert, Inc.
- 1316 [ODA] Oregon Department of Agriculture
- 1317 [OTCO] Oregon Tilth Certified Organic
- 1318 [OC] Organic Certifiers, Inc.
- 1319 [OCIA] Organic Crop Improvement Association

1320	[OIA] Organización Internacional Agropecuaria
1321	[PCO] Pennsylvania Certified Organic
1322	[QAI] Quality Assurance International
1323	[QCS] Quality Certification Services
1324	• [SCS] SCS Global Services, Inc.
1325	[SRS] SRS Certification GmbH
1326	• [TDA] Texas Department of Agriculture
1327	[TNC] Transitioning to a New Certifier
1328	• [UDAF] Utah Department of Agriculture and Food
1329	[WSDA] Washington State Department of Agriculture
1330	[WFCFO] Where Food Comes From Organic (formerly A Bee Organic)
1331	
1332	^c Physical location of the operation where given:
1333	• China = The People's Republic of China
1334	• Laos = Lao People's Democratic Republic
1335	• Netherlands = The Netherlands
1336	• Russia = The Russian Federation
1337	• UAE = United Arab Emirates
1338	• UK = The United Kingdom of Great Britain and Northern Ireland
1339	• USA = The United States of America.
1340	
1341	References
1342	
1343	Afsah-Hejri, L., Hajeb, P., & Ehsani, R. J. (2020). Application of ozone for degradation of mycotoxins in food: A review.
1344 1345	Comprehensive Reviews in Food Science and Food Safety, 19(4), 1777–1808. https://doi.org/10.1111/1541-4337.12594
1346	Aganovic, K., Hertel, C., Vogel, Rudi. F., Johne, R., Schlüter, O., Schwarzenbolz, U., Jäger, H., Holzhauser, T., Bergmair, J.,
1347	Roth, A., Sevenich, R., Bandick, N., Kulling, S. E., Knorr, D., Engel, KH., & Heinz, V. (2021). Aspects of high
1348	hydrostatic pressure food processing: Perspectives on technology and food safety. Comprehensive Reviews in Food
1349	Science and Food Safety, 20(4), 3225–3266. https://doi.org/10.1111/1541-4337.12763
1350	
1351 1352	Agarwal, V., Lal, P., & Pruthi, V. (2008). Prevention of <i>Candida albicans</i> biofilm by plant oils. <i>Mycopathologia</i> , 165(1), 13–19.
1352	Agriopoulou, S., Stamatelopoulou, E., Sachadyn-Król, M., & Varzakas, T. (2020). Lactic acid bacteria as antibacterial agents to
1354	extend the shelf life of fresh and minimally processed fruits and vegetables: Quality and safety aspects.
1355	Microorganisms, 8(6). https://doi.org/10.3390/microorganisms8060952
1356	
1357	Alankar, S. (2009). A review on peppermint oil. Asian Journal of Pharmaceutical and Clinical Research, 2(2), 27-33.
1358	
1359 1360	Andrés, V., Villanueva, MJ., & Tenorio, MD. (2016). Influence of high pressure processing on microbial shelf life, sensory profile, soluble sugars, organic acids, and mineral content of milk- and soy-smoothies. LWT, 65, 98–105.
1361	https://doi.org/10.1016/j.lwt.2015.07.066
1362	
1363	Arvanitoyannis, I. S., Kotsanopoulos, K. V., & Savva, A. G. (2017). Use of ultrasounds in the food industry-Methods and effects
1364	on quality, safety, and organoleptic characteristics of foods: A review. Critical Reviews in Food Science and Nutrition,
1365	57(1), 109–128.
1366 1367	Aslam, R., Alam, M. S., & Saeed, P. A. (2020). Sanitization potential of ozone and its role in postharvest quality management of
1368	fruits and vegetables. Food Engineering Reviews, 12(1), 48–67. https://doi.org/10.1007/s12393-019-09204-0
1369	
1370	Austin, H. (2020, September 29). NOSB Comments~Virtual Fall Meeting~2020. Handling Subcommittee Materials~Written
1371	Comments, Comment ID: AMS-NOP-20-0041-0487. Regulations.gov. https://www.regulations.gov/comment/AMS-
1372	<u>NOP-20-0041-0487</u>
1373	Dakan D. D. & Cront I. A. (2018) Active inquestions aligible for minimum with presidence Operations of the model N
1374 1375	Baker, B. P., & Grant, J. A. (2018). Active ingredients eligible for minimum risk pesticide use: Overview of the profiles. New York State IPM Program. https://ecommons.cornell.edu/server/api/core/bitstreams/3b1a195d-b17b-43ad-aad0-
1375	5d1a04d82cff/content
1377	
1378	Ballester-Costa, C., Sendra, E., Fernández-López, J., & Viuda-Martos, M. (2016). Evaluation of the antibacterial and antioxidant
1379	activities of chitosan edible films incorporated with organic essential oils obtained from four Thymus species. Journal
1380	of Food Science and Technology, 53, 3374–3379.

1381 1382 1383 1384 1385	Bañuelos, M. A., Loira, I., Guamis, B., Escott, C., Del Fresno, J. M., Codina-Torrella, I., Quevedo, J. M., Gervilla, R., Chavarría, J. M. R., de Lamo, S., Ferrer-Gallego, R., Álvarez, R., González, C., Suárez-Lepe, J. A., & Morata, A. (2020). White wine processing by UHPH without SO2. Elimination of microbial populations and effect in oxidative enzymes, colloidal stability and sensory quality. <i>Food Chemistry</i> , 332, 127417. <u>https://doi.org/10.1016/j.foodchem.2020.127417</u>
1386 1387 1388 1389 1390	Basak, S., Shaik, L., & Chakraborty, S. (2023). Effect of ultraviolet and pulsed light treatments on ascorbic acid content in fruit juices-A review of the degradation mechanism. <i>Food Chemistry Advances</i> , 2, 100333. <u>https://doi.org/10.1016/j.focha.2023.100333</u>
1390 1391 1392 1393 1394	 Beckett, W. S. (1991). Ozone, air pollution, and respiratory health. <i>The Yale Journal of Biology and Medicine</i>, 64(2), 167. Behrends, M., Beiderlinden, M., & Peters, J. (2005). Acute lung injury after peppermint oil injection. <i>Anesthesia & Analgesia</i>, 101(4), 1160–1162.
1395 1395 1396 1397	Bell, M. L., Zanobetti, A., & Dominici, F. (2014). Who is more affected by ozone pollution? A systematic review and meta- analysis. American Journal of Epidemiology, 180(1), 15–28.
1398 1399 1400	Beltrán, D., Selma, M. V., Marín, A., & Gil, M. I. (2005). Ozonated water extends the shelf life of fresh-cut lettuce. <i>Journal of Agricultural and Food Chemistry</i> , 53(14), 5654–5663.
1401 1402 1403	Bermúdez-Aguirre, D., & Barbosa-Cánovas, G. V. (2013). Disinfection of selected vegetables under nonthermal treatments: Chlorine, acid citric, ultraviolet light and ozone. <i>Food Control</i> , 29(1), 82–90. <u>https://doi.org/10.1016/j.foodcont.2012.05.073</u>
1404 1405 1406	Bocci, V. (2011). Ozone. Springer.
1407 1408 1409	Bogsan, C. S., Nero, L. A., & Todorov, S. D. (2015). From traditional knowledge to an innovative approach for bio-preservation in food by using lactic acid bacteria. In MT. Lion (Ed.), <i>Beneficial Microorganisms in Food and Nutraceuticals</i> (pp. 1–36). Springer.
1410 1411	https://www.academia.edu/download/52828962/Beneficial_Microorganisms_in_Food_and_Nu.pdf#page=10
1412 1413 1414 1415	Boopathy, B., Rajan, A., & Radhakrishnan, M. (2022). Ozone: An alternative fumigant in controlling the stored product insects and pests: A status report. Ozone: Science & Engineering, 44(1), 79–95. <u>https://doi.org/10.1080/01919512.2021.1933899</u>
1416 1417 1418 1419	Boskovic, M., Djordjevic, J., Ivanovic, J., Janjic, J., Zdravkovic, N., Glisic, M., Glamoclija, N., Baltic, B., Djordjevic, V., & Baltic, M. (2017). Inhibition of <i>Salmonella</i> by thyme essential oil and its effect on microbiological and sensory properties of minced pork meat packaged under vacuum and modified atmosphere. <i>International Journal of Food</i> <i>Microbiology</i> , 258, 58–67. <u>https://doi.org/10.1016/j.ijfoodmicro.2017.07.011</u>
1420 1421 1422 1423	Botondi, R., Barone, M., & Grasso, C. (2021). A review into the effectiveness of ozone technology for improving the safety and preserving the quality of fresh-cut fruits and vegetables. <i>Foods</i> , <i>10</i> (4), 748.
1423 1424 1425 1426 1427	Brodowska, A. J., Nowak, A., & Śmigielski, K. (2018). Ozone in the food industry: Principles of ozone treatment, mechanisms of action, and applications: An overview. <i>Critical Reviews in Food Science and Nutrition</i> , 58(13), 2176–2201. <u>https://doi.org/10.1080/10408398.2017.1308313</u>
1427 1428 1429	Burdock, G. (2016). Fenaroli's handbook of flavor ingredients. CRC press.
1430 1431 1432	Burt, S. (2004). Essential oils: Their antibacterial properties and potential applications in foods—A review. <i>International Journal of Food Microbiology</i> , 94(3), 223–253.
1433 1434 1435 1436	Calderone, N. W., Wilson, W. T., & Spivak, M. (1997). Plant extracts used for control of the parasitic mites Varroa jacobsoni (Acari: Varroidae) and Acarapis woodi (Acari: Tarsonemidae) in colonies of Apis mellifera (Hymenoptera: Apidae). Journal of Economic Entomology, 90(5), 1080–1086.
1437 1438	CAN/CGSB. (2021a). Organic Production Systems: General Principles and Management Standards (32.310-2020). Canadian General Standards Board.
1439 1440 1441 1442	CAN/CGSB. (2021b). Organic Production Systems: Permitted Substances List (32.311-2020). Canadian General Standards Board.
1442 1443 1444 1445	Cano-Lamadrid, M., & Artés-Hernández, F. (2022). By-products revalorization with non-thermal treatments to enhance phytochemical compounds of fruit and vegetables derived products: A review. <i>Foods</i> , 11(1). <u>https://doi.org/10.3390/foods11010059</u>

1446	
1447	CCOF. (2020, September 30). RE: Handling Subcommittee: 2022 Sunset Reviews, Comment ID AMS-NOP-20-0041-0640.
1448	Regulations.gov. https://www.regulations.gov/comment/AMS-NOP-20-0041-0640
1449	
1450	Chang, Y., Harmon, P. F., Treadwell, D. D., Carrillo, D., Sarkhosh, A., & Brecht, J. K. (2022). Biocontrol potential of essential
1451	oils in organic horticulture systems: From farm to fork. Frontiers in Nutrition, 8, 805138.
1452	
1453	Chatterjee, D. (1989). An effective formulation for mould- and aflatoxin-free storage of corn. Letters in Applied Microbiology,
1454	9(1), 25–28. <u>https://doi.org/10.1111/j.1472-765X.1989.tb00283.x</u>
1455	
1456	Chawla, A., Lobacz, A., Tarapata, J., & Zulewska, J. (2021). UV light application as a mean for disinfection applied in the dairy
1457	industry. Applied Sciences, 11(16). https://doi.org/10.3390/app11167285
1458 1459	China V. Assistantes C. & Venalue T. (2022). Advance Applications and Comparison of Thermal (Dectamination
1439	Chiozzi, V., Agriopoulou, S., & Varzakas, T. (2022). Advances, Applications, and Comparison of Thermal (Pasteurization, Sterilization, and Aseptic Packaging) against Non-Thermal (Ultrasounds, UV Radiation, Ozonation, High Hydrostatic
1460	Pressure) Technologies in Food Processing. <i>Applied Sciences</i> , 12(4). <u>https://doi.org/10.3390/app12042202</u>
1462	1100000000000000000000000000000000000
1463	Cho, GL., & Ha, JW. (2021). Synergistic effect of citric acid and xenon light for inactivating foodborne pathogens on spinach
1464	leaves. Food Research International, 142, 110210.
1465	100/05.1 000 Resource International, 172, 110210.
1466	Choudhary, R., & Bandla, S. (2012). Ultraviolet pasteurization for food industry. International Journal of Food Science and
1467	Nutrition Engineering, 2(1), 12–15.
1468	
1469	Christeyns. (2024). Hygeine through cavitation: Ultrasonic cleaning in the food industry.
1470	https://www.christeyns.com/article/hygiene-through-cavitation-ultrasonic-cleaning-in-the-food-industry/
1471	
1472	Coimbra, A., Ferreira, S., & Duarte, A. P. (2022). Biological properties of Thymus zygis essential oil with emphasis on
1473	antimicrobial activity and food application. Food Chemistry, 393, 133370.
1474	https://doi.org/10.1016/j.foodchem.2022.133370
1475	
1476	Compressed Gas Association. (1999). Ozone. In Handbook of Compressed Gases (pp. 563-567). Springer.
1477	
1478	Damiani, N., Gende, L. B., Bailac, P., Marcangeli, J. A., & Eguaras, M. J. (2009). Acaricidal and insecticidal activity of essential
1479 1480	oils on Varroa destructor (Acari: Varroidae) and Apis mellifera (Hymenoptera: Apidae). Parasitology Research,
1480	106(1), 145–152.
1481	Davis, C., Bollinger, L. A., & Dijkema, G. P. J. (2016). The state of the states: Data-driven analysis of the US Clean Power Plan.
1483	Renewable and Sustainable Energy Reviews, 60, 631–652. https://doi.org/10.1016/j.rser.2016.01.097
1484	$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000$
1485	Dayananda, K., Senanayake, U., & Wijesekera, R. (2004). Harvesting, Processing, and Quality Assessment of Cinnamon
1486	Products. In P. Ravindran, K. Nirmal Babu, & M. Shylaja (Eds.), <i>Cinnamon and Cassia: The Genus Cinnamonum</i> (pp.
1487	130–155). CRC Press.
1488	
1489	de Alencar, E. R., Faroni, L. R. D., Soares, N. de F. F., da Silva, W. A., & da Silva Carvalho, M. C. (2012). Efficacy of ozone as
1490	a fungicidal and detoxifying agent of aflatoxins in peanuts. Journal of the Science of Food and Agriculture, 92(4), 899-
1491	905.
1492	
1493	de Oliveira, J. M., de Alencar, E. R., Blum, L. E. B., de Souza Ferreira, W. F., Botelho, S. de C. C., Racanicci, A. M. C., Santos
1494	Leandro, E. dos, Mendonça, M. A., Moscon, E. S., Bizerra, L. V. A. dos S., & da Silva, C. R. (2020). Ozonation of
1495	Brazil nuts: Decomposition kinetics, control of Aspergillus flavus and the effect on color and on raw oil quality. LWT,
1496	123, 109106. https://doi.org/10.1016/j.lwt.2020.109106
1497	
1498	Denny, E. F. K., & Lawrence, B. M. (2007). The distillation of mint oils: History, current theory and practice. In B. M. Lawrence
1499	(Ed.), Mint: The genus Mentha (pp. 185–216). CRC Press.
1500 1501	Dev Kumar, G., & Ravishankar, S. (2019). Ozonized water with plant antimicrobials: An effective method to inactivate
1501	Salmonella enterica on iceberg lettuce in the produce wash water. <i>Environmental Research</i> , 171, 213–217.
1502	https://doi.org/10.1016/j.envres.2018.11.023
1503	<u>Impostationer 10.1010/j.011105.2010.111020</u>
1504	Devlieghere, F., Vermeiren, L., & Debevere, J. (2004). New preservation technologies: Possibilities and limitations. 14(4), 273-
1505	285. Scopus. <u>https://doi.org/10.1016/j.idairyj.2003.07.002</u>
1507	
1508	Diksha, Samandeep, Rehal, J., & Kaur, J. (2023). Removal of pesticide residues in food using ozone. Food Chemistry Advances,
1509	<i>3</i> , 100512. <u>https://doi.org/10.1016/j.focha.2023.100512</u>
1510	

1511 1512 1513	Dubey, P., Singh, A., & Yousuf, O. (2022). Ozonation: An evolving disinfectant technology for the food industry. Food and Bioprocess Technology, 15(9), 2102–2113. <u>https://doi.org/10.1007/s11947-022-02876-3</u>
1515 1514 1515 1516	Dwivedy, A. K., Kumar, M., Upadhyay, N., Prakash, B., & Dubey, N. K. (2016). Plant essential oils against food borne fungi and mycotoxins. <i>Food Mycology</i> , 11, 16–21. <u>https://doi.org/10.1016/j.cofs.2016.08.010</u>
1510 1517 1518 1519 1520	Echegaray, E. R., & Cloyd, R. A. (2012). Effects of reduced-risk pesticides and plant growth regulators on rove beetle (Coleoptera: Staphylinidae) adults. <i>Journal of Economic Entomology</i> , 105(Copyright (C) 2015 American Chemical Society (ACS). All Rights Reserved.), 2097–2106. <u>https://doi.org/10.1603/EC12244</u>
1521 1522 1523	EGTOP. (2014). Final report on food (III). Expert Group for Technical Advice on Organic Production. <u>https://agriculture.ec.europa.eu/document/download/75909936-89df-4141-980b-ffb71f23f763_en?filename=egtop-final-report-food-iii_en.pdf</u>
1524 1525 1526 1527	EGTOP. (2016). <i>Final report on cleaning and disinfection</i> . Expert Group for Technical Advice on Organic Production. <u>https://agriculture.ec.europa.eu/document/download/4ff119b1-b95a-48af-bbff-</u> <u>0830027e337c_en?filename=final_report_egtop_on_cleaning_disinfectant_en.pdf</u>
1528 1529 1530 1531	EGTOP. (2021). Criteria for evaluation of products for cleaning and disinfection [Final Report]. Expert Group for Technical Advice on Organic Production. <u>https://agriculture.ec.europa.eu/document/download/4ff119b1-b95a-48af-bbff-0830027e337c_en?filename=final_report_egtop_on_cleaning_disinfectant_en.pdf</u>
1532 1533 1534	Eliuz, E. (2020). Antimicrobial activity of citric acid against <i>Escherichia coli</i> , <i>Staphylococcus aureus</i> and <i>Candida albicans</i> as a sanitizer agent. <i>Eurasian Journal of Forest Science</i> , 8(3), 295–301.
1535 1536 1537 1538	Ellis, M. D., & Baxendale, F. P. (1997). Toxicity of seven monoterpenoids to tracheal mites (Acari: Tarsonemidae) and their honey bee (Hymenoptera: Apidae) hosts when applied as fumigants. <i>Journal of Economic Entomology</i> , 90(5), 1087– 1091.
1539 1540 1541 1542	EPRI. (2001). The use of ozone as an antimicrobial agent: Agricultural and food processing technical assessment. Electric Power Research Institute.
1542 1543 1544 1545	EU Commission. (2007). On organic production and labelling of organic products and repealing Council Regulation (EEC) No 2092/91 (EC 834/2007). <u>https://eur-lex.europa.eu/eli/reg/2007/834/oj</u>
1546 1547 1548 1549	EU Commission. (2008a). Organic production and labelling of organic products with regard to organic production, labelling and control (EC 889/2008). <u>https://eur-</u> <u>lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:250:0001:0084:EN:PDF</u>
1550 1551 1552	EU Commission. (2008b). Laying down detailed rules for implementation of Council Regulation (EC) No 834/2007 as regards the arrangements for imports of organic products from third countries (EC 1235/2008). <u>https://eur-lex.europa.eu/legal- content/EN/ALL/?uri=CELEX%3A32008R1235</u>
1553 1554 1555 1556	EU Commission. (2018). On organic production and labelling of organic products and repealing Council Regulation (EC) No 834/2007 (EC 2018/848). https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:250:0001:0084:EN:PDF
1550 1557 1558 1559	EU Commission. (2021). Authorising certain products and substances for use in organic production and establishing their lists (EC 2021/1165). <u>https://eur-lex.europa.eu/eli/reg_impl/2021/1165/oj</u>
1560 1561 1562 1563 1564	Ezzaky, Y., Elmoslih, A., Silva, B. N., Bonilla-Luque, O. M., Possas, A., Valero, A., Cadavez, V., Gonzales-Barron, U., & Achemchem, F. (2023). In vitro antimicrobial activity of extracts and essential oils of Cinnamomum, Salvia, and Mentha spp. Against foodborne pathogens: A meta-analysis study. <i>Comprehensive Reviews in Food Science and Food</i> <i>Safety</i> , 22(6), 4516–4536.
1565 1566 1567	Fan, X., & Song, Y. (2020). Advanced oxidation process as a postharvest decontamination technology to improve microbial safety of fresh produce. <i>Journal of Agricultural and Food Chemistry</i> , 68(46), 12916–12926.
1568 1569 1570 1571	FAO/WHO Joint Standards Programme. (2013). Codex Alimentarius Guidelines for the Production, Processing, Labelling and Marketing of Organic Processed Foods (3rd ed.). FAO/WHO. <u>https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FC XG%2B32-1999%252Fcxg_032e.pdf</u>
1572 1573 1574 1575	Fasake, V., Dash, S. K., Dhalsamant, K., Sahoo, N. R., & Pal, U. S. (2022). Effect of ozone and antimicrobial treatments on the shelf life of cauliflower under modified atmosphere packaging. <i>Journal of Food Science and Technology</i> , 59(8), 2951– 2961. <u>https://doi.org/10.1007/s13197-021-05326-8</u>

576	
577	FEMA Expert Panel. (2022). GRAS Flavoring Substances. Food Technology, 76(3), 58-70.
78 79 80 81	Floare, AD., Dumitrescu, R., Alexa, V. T., Balean, O., Szuhanek, C., Obistioiu, D., Cocan, I., Neacsu, AG., Popescu, I., Fratila, A. D., & Galuscan, A. (2023). Enhancing the Antimicrobial Effect of Ozone with Mentha piperita Essential Oil. <i>Molecules</i> , 28(5). <u>https://doi.org/10.3390/molecules28052032</u>
82 83 84	Foley, P., & Kirschner, M. J. (2022). Ozone. In Ullmann's Encyclopedia of Industrial Chemistry (6th ed., pp. 1–10). Wiley-VCH. https://doi.org/10.1002/14356007.a18_349.pub2
85 86 87	Forney, C. F., Song, J., Fan, L., Hildebrand, P. D., & Jordan, M. A. (2003). Ozone and 1-methylcyclopropene alter the postharvest quality of broccoli. <i>Journal of the American Society for Horticultural Science</i> , <i>128</i> (3), 403–408.
88 89 90 91	Galdeano, M. C., Wilhelm, A. E., Goulart, I. B., Tonon, R. V., Freitas-Silva, O., Germani, R., & Chávez, D. W. H. (2018). Effect of water temperature and pH on the concentration and time of ozone saturation. <i>Brazilian Journal of Food Technology</i> , 21(0). <u>https://doi.org/10.1590/1981-6723.15617</u>
2 3 4 5	Gende, L. B., Maggi, M. D., Damiani, N., Fritz, R., Eguaras, M. J., & Floris, I. (2009). Advances in the apiary control of the honeybee American Foulbrood with Cinnamon (<i>Cinnamomum zeylanicum</i>) essential oil. <i>Bulletin of Insectology</i> , 62(1), 93–97.
5 7 8	Geweely, N. S. (2022). A novel comparative review between chemical, natural essential oils and physical (ozone) conservation of archaeological objects against microbial deterioration. <i>Geomicrobiology Journal</i> , <i>39</i> (6), 531–540.
9 0 1 2	Gordon, E. R. (2024). Density and Specific Gravity. In <i>Fundamentals of general organic and biological chemistry</i> . LibreTexts. https://chem.libretexts.org/Bookshelves/Introductory_Chemistry/Fundamentals_of_General_Organic_and_Biological_ Chemistry_(LibreTexts)/01%3A_Matter_and_Measurements/1.12%3A_Density_and_Specific_Gravity
8 1 5 5	Goyal, A., Sharma, V., Upadhyay, N., Sihag, M., & Kaushik, R. (2013). High pressure processing and its impact on milk proteins: A review. J. Dairy Sci. Technol, 2(1), 2319–3409.
) 7 }	Greene, A. K., Güzel-Seydim, Z. B., & Seydim, A. C. (2012). Chemical and physical properties of ozone. In <i>Ozone in food processing</i> (pp. 19–31). Wiley Online Library.
	Grosse, A. V., & Stokes, C. S. (1967). <i>Method for the production of ozone using a plasma jet</i> (US Patent Office Patent 3,309,300).
	Grulke, N. E., & Heath, R. L. (2020). Ozone effects on plants in natural ecosystems. <i>Plant Biology</i> , 22(S1), 12–37. https://doi.org/10.1111/plb.12971
	Guicherit, R., & Roemer, M. (2000). Tropospheric ozone trends. <i>Chemosphere - Global Change Science</i> , 2(2), 167–183. https://doi.org/10.1016/S1465-9972(00)00008-8
	Günthardt-Goerg, M. S., Schläpfer, R., & Vollenweider, P. (2023). Responses to airborne ozone and soilborne metal pollution in afforestation plants with different life forms. <i>Plants</i> , <i>12</i> (16), 3011.
	Gupta, C., Garg, A. P., Uniyal, R. C., & Kumari, A. (2008). Antimicrobial activity of some herbal oils against common food- borne pathogens. <i>African Journal of Microbiology Research</i> , 2(10), 258–261.
	Guzel-Seydim, Z. B., Greene, A. K., & Seydim, A. (2004). Use of ozone in the food industry. LWT-Food Science and Technology, 37(4), 453–460.
	Gyawali, R., Mahapatra, A. K., Bardsley, C. A., & Niemira, B. A. (2024). Nonthermal techniques, antimicrobial agents, and packaging methods to improve the microbial safety of nuts. <i>Trends in Food Science & Technology</i> , 146, 104363. <u>https://doi.org/10.1016/j.tifs.2024.104363</u>
	Hayes, J. R., Stavanja, M. S., & Lawrence, B. M. (2007). Biological and toxicological properties of mint oils and their major isolates: Safety assessment. In B. M. Lawrence (Ed.), <i>Mint: The genus Mentha</i> . (pp. 422–491). CRC Press.
- - -	Hielscher. (2024). Ultrasound in the food industry. https://www.hielscher.com/food_01.htm
	Hili, P., Evans, C., & Veness, R. (1997). Antimicrobial action of essential oils: The effect of dimethylsulphoxide on the activity of cinnamon oil. <i>Letters in Applied Microbiology</i> , 24(4), 269–275.
39	

1640 1641 1642	Hite, B. H. (1899). The effect of pressure in the preservation of milk: A preliminary report (Bulletin 58). West Virginia Agricultural Experiment Station.
1643 1644	Horvath, M., Bilitzky, L., & Huttner, J. (1985). Ozone. Elsevier.
1645 1646	Huang, HW., Wu, SJ., Lu, JK., Shyu, YT., & Wang, CY. (2017). Current status and future trends of high-pressure processing in food industry. <i>Food Control</i> , 72, 1–8. <u>https://doi.org/10.1016/j.foodcont.2016.07.019</u>
1647 1648 1649	Huppertz, T. (2010). High pressure processing of milk. In M. W. Griffiths (Ed.), Improving the Safety and Quality of Milk (pp. 373–399). Woodhead Publishing. <u>https://doi.org/10.1533/9781845699420.4.373</u>
1650 1651 1652 1653	Hyldgaard, M., Mygind, T., & Meyer, R. L. (2012). Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. <i>Frontiers in Microbiology</i> , 3. <u>https://doi.org/10.3389/fmicb.2012.00012</u>
1654	IFOAM. (2014). IFOAM Norms. IFOAM. https://www.ifoam.bio/en/ifoam-norms
1655 1656 1657	Imdorf, A., Bogdonoff, S., Ochoa, R. I., & Calderone, N. W. (1999). Use of essential oils for the control of Varroa jacobsoni Oud. In honey bee colonies. <i>Apidologie</i> , 30(2–3), 209–228.
1658 1659 1660	In, YW., Kim, JJ., Kim, HJ., & Oh, SW. (2013). Antimicrobial activities of acetic acid, citric acid and lactic acid against Shigella species. Journal of Food Safety, 33(1), 79–85. <u>https://doi.org/10.1111/jfs.12025</u>
1661 1662 1663	Japanese Agricultural Standard for Organic Processed Foods, 18 Japanese Agricultural Standard (2022). https://www.japaneselawtranslation.go.jp/notices/view/134
1664 1665 1666	JECFA. (2001). Evaluation of certain food additives and contaminants. World Health Organization. http://whqlibdoc.who.int/trs/WHO_TRS_901.pdf
1667 1668 1669 1670	Jerrett, M., Burnett, R. T., Pope, C. A., Ito, K., Thurston, G., Krewski, D., Shi, Y., Calle, E., & Thun, M. (2009). Long-term ozone exposure and mortality. <i>New England Journal of Medicine</i> , 360(11), 1085–1095. <u>https://doi.org/10.1056/NEJMoa0803894</u>
1671 1672 1673 1674	Jian, F., Jayas, D. S., & White, N. D. (2013). Can ozone be a new control strategy for pests of stored grain? <i>Agricultural Research</i> , <i>2</i> , 1–8.
1675 1676 1677	Jimenez-Montenegro, L., Lopez-Fernandez, M., & Gimenez, E. (2021). Worldwide Research on the Ozone Influence in Plants. Agronomy, 11(8). <u>https://doi.org/10.3390/agronomy11081504</u>
1678 1679 1680	Kader, A. A. (2002). Postharvest Technology of Horticultural Crops. University of California, Agriculture and Natural Resources. <u>https://books.google.com/books?id=O1zhx2OWftQC</u>
1681 1682 1683 1684	Kemet. (2024). Ultrasonic cleaning for the food industry. https://www.kemet.co.uk/blog/cleaning/ultrasonic-cleaning-for-the- food- industry#:~:text=Ultrasonic%20cleaning%20ensures%20thorough%20sanitation,and%20complying%20with%20safety %20regulations.
1685 1686 1687 1688	Khadre, M. A., Yousef, A. E., & Kim, JG. (2001). Microbiological Aspects of Ozone Applications in Food: A Review. Journal of Food Science, 66(9), 1242–1252. <u>https://doi.org/10.1111/j.1365-2621.2001.tb15196.x</u>
1689 1690 1691 1692	Khan, I. A., & Abourashed, E. A. (2010). Leung's encyclopedia of common natural ingredients used in food, drugs, and cosmetics / (3rd ed.). John Wiley & Sons. <u>http://encompass.library.cornell.edu/cgi- bin/checkIP.cgi?access=gateway_standard%26url=http://app.knovel.com/web/toc.v/cid:kpLECNIUF1</u>
1692 1693 1694 1695 1696	Kim, JG., Yousef, A. E., & Khadre, M. A. (2003). Ozone and its current and future application in the food industry. In Advances in Food and Nutrition Research (Vol. 45, pp. 167–218). Academic Press. <u>https://doi.org/10.1016/S1043- 4526(03)45005-5</u>
1696 1697 1698	Klaassen, C. D. (Ed.). (2001). Casarett and Doull's Toxicology: The basic science of poisons (6th ed.). McGraw-Hill.
1698 1699 1700 1701	Kleanthous, C. (2010). Swimming against the tide: Progress and challenges in our understanding of colicin translocation. <i>Nature Reviews Microbiology</i> , 8(12), 843–848. <u>https://doi.org/10.1038/nrmicro2454</u>
1701 1702 1703 1704	KMAFRA. (2020). Enforcement Rule Of The Act On The Promotion Of Environment-Friendly Agriculture And Fisheries And The Management Of And Support For Organic Foods. Korean (Republic of) Ministry of Agriculture, Food, and Rural Affairs.

1705	
	Koutchma, T., Popović, V., Ros-Polski, V., & Popielarz, A. (2016). Effects of Ultraviolet Light and High-Pressure Processing on
1707	Quality and Health-Related Constituents of Fresh Juice Products. Comprehensive Reviews in Food Science and Food
1708	Safety, 15(5), 844–867. https://doi.org/10.1111/1541-4337.12214
1709	
	Kraus, B., Koeninger, N., & Fuchs, S. (1994). Screening of Substances for their effect on Varroa jacobsoni - Attractiveness,
1711	repellency, toxicity and masking effects of ethereal oils. Journal of Apicultural Research, 33(1), 34-43.
1712	
1713	Lacefield, J. (2014). Physics of ultrasound. In D. Dance, S. Christofides, A. Maidment, I. McLean, & K. Ng (Eds.), Diagnostic
1714	radiology physics: A handbook for teachers and students (pp. 291–309). International Atomic Energy Agency.
1715	
1716	Laranjo, M., Fernandez-Leon, A. M., Potes, M., Agulhero-Santos, A., & Elias, M. (2017). Use of essential oils in food
1717	preservation. In A. Mendez-Vilas (Ed.), Antimicrobial Research: Novel Bioknowledge and Educational Programs (pp.
1718	177–188). Formatex Research Center.
1719	
1720	Lawrence, B. M. (2007). Oil composition of other Mentha species and hybrids. In B. M. Lawrence (Ed.), Mint: The genus
1721	Mentha (pp. 325–346). CRC Press.
1722	
1723	Lawrence, B. M., Tucker, A. O., Stahl-Biskup, E., & Sáez, F. (2002). The genus Thymus as a source of commercial products. In
1724	Thyme. The genus Thymus (pp. 252–262). CRC Press.
1725	
	Lim, S., Shi, J. L., von Gunten, U., & McCurry, D. L. (2022). Ozonation of organic compounds in water and wastewater: A
1727	critical review. Water Research, 213, 118053. https://doi.org/10.1016/j.watres.2022.118053
1728	
1729	Lippmann, M. (1989). Health effects of ozone a critical review. JAPCA, 39(5), 672-695.
1730	
1731	Lis-Balchin, M., Deans, S. G., & Eaglesham, E. (1998). Relationship between bioactivity and chemical composition of
1732	commercial essential oils. Flavour and Fragrance Journal, 13(2), 98–104. https://doi.org/10.1002/(SICI)1099-
1733	<u>1026(199803/04)13:2<98::AID-FFJ705>3.0.CO;2-B</u>
1734	
1735	Madan, M., & Kannan, S. (2004). Economics and Marketing of Cinnamon and Cassia-A Global View. In P. Ravindran, K.
1736	Nirmal Babu, & M. Shylaja (Eds.), Cinnamon and cassia: The genus Cinnamomum (pp. 285-310). CRC.
1737	
1738	Mahony, J., McAuliffe, O., Ross, R. P., & Van Sinderen, D. (2011). Bacteriophages as biocontrol agents of food pathogens.
1739	Current Opinion in Biotechnology, 22(2), 157–163.
1740	
1741	Malekmohammad, K., Rafieian-Kopaei, M., Sardari, S., & Sewell, R. D. E. (2021). Toxicological effects of Mentha x piperita
1742	(peppermint): A review. Toxin Reviews, 40(4), 445-459. https://doi.org/10.1080/15569543.2019.1647545
1743	
1744	Mani-López, E., García, H., & López-Malo, A. (2012). Organic acids as antimicrobials to control Salmonella in meat and poultry
1745	products. Food Research International, 45(2), 713–721.
1746	
	Mason, T. J. (2003). Sonochemistry and sonoprocessing: The link, the trends and (probably) the future. Selected Papers from the
1748	Eighth Conference of the European Society of Sonochemistry, 10(4), 175–179. <u>https://doi.org/10.1016/S1350-</u>
1749	<u>4177(03)00086-5</u>
1750	
1751	Mayookha, V. P., Pandiselvam, R., Kothakota, A., Padma Ishwarya, S., Chandra Khanashyam, A., Kutlu, N., Rifna, E. J., Kumar,
1752	M., Panesar, P. S., & Abd El-Maksoud, A. A. (2023). Ozone and cold plasma: Emerging oxidation technologies for
1753	inactivation of enzymes in fruits, vegetables, and fruit juices. <i>Food Control</i> , 144, 109399.
1754	https://doi.org/10.1016/j.foodcont.2022.109399
1755	
1756	Menzel, D. B. (1984). Ozone: An overview of its toxicity in man and animals. <i>Journal of Toxicology and Environmental Health</i> ,
1757	13(2-3), 181–204. https://doi.org/10.1080/15287398409530493
1758	Minim O and Marrier T L Lang C A θ Marrier D E (2010) The set of the triangle of the triang
	Misiou, O., van Nassau, T. J., Lenz, C. A., & Vogel, R. F. (2018). The preservation of Listeria-critical foods by a combination of
1760 1761	endolysin and high hydrostatic pressure. <i>International Journal of Food Microbiology</i> , 266, 355–362. https://doi.org/10.1016/j.jjfoodmicro.2017.10.004
1762	nups.//doi.org/10.1010/j.jj10000111010.2017.10.004
	Montes Polmont P. & Convoial M (1008) Control of Agrounding Agroups in major with start constitution of the
1763 1764	Montes-Belmont, R., & Carvajal, M. (1998). Control of <i>Aspergillus flavus</i> in maize with plant essential oils and their components. <i>Journal of Food Protection</i> , 61(5), 616, 619
1765	components. Journal of Food Protection, 61(5), 616–619.
	Mastachari D. Cavahian M. Jafarzadah S. Cua I. H. Hadidi M. Dandisalware D. Husawa E. & Manavi Khanashah
1766 1767	Mostashari, P., Gavahian, M., Jafarzadeh, S., Guo, JH., Hadidi, M., Pandiselvam, R., Huseyn, E., & Mousavi Khaneghah, A. (2022). Ozone in wineries and wine processing: A review of the benefits, application, and perspectives. <i>Comprehensive</i>
1768	<i>Reviews in Food Science and Food Safety, 21</i> (4), 3129–3152. https://doi.org/10.1111/1541-4337.12971
1768	Neviews in 1'000 science and 1'000 sujely, 21(4), 5129–5152. <u>https://doi.org/10.1111/1541-4557.12971</u>
1/09	

1770 1771 1772	NASA. (2015). Ozone Facts. Goddard Space Flight Center, National Aeronautics and Space Administration. https://ozonewatch.gsfc.nasa.gov/facts/SH.html
1773 1774 1775	Nath, S. S., Pandey, C., & Roy, D. (2012). A near fatal case of high dose peppermint oil ingestion-Lessons learnt. <i>Indian Journal of Anaesthesia</i> , <i>56</i> (6), 582.
1776 1777 1777 1778	National Center for Biotechnology Information. (2024). Pubchem compound summary for cid 24823, ozone. https://pubchem.ncbi.nlm.nih.gov/compound/24823
1779 1780	Neme, K., & Mohammed, A. (2017). Mycotoxin occurrence in grains and the role of postharvest management as a mitigation strategies. A review. <i>Food Control</i> , 78, 412–425. <u>https://doi.org/10.1016/j.foodcont.2017.03.012</u>
1781 1782 1783 1784 1785	Newman, J. R., Schreiber, R. K., & Novakova, E. (1992). Air Pollution Effects on Terrestrial and Aquatic Animals. In J. R. Barker & D. T. Tingey (Eds.), <i>Air Pollution Effects on Biodiversity</i> (pp. 177–233). Springer US. <u>https://doi.org/10.1007/978-1-4615-3538-6_10</u>
1786 1786 1787	NIOSH. (2019, October 30). Ozone. NIOSH Pocket Guide to Chemical Hazards. https://www.cdc.gov/niosh/npg/npgd0476.html
1788 1788 1789 1790	Noci, F. (2017). Dairy products processed with ultrasound. In D. Bermudez-Aguirre (Ed.), Ultrasound: Advances for Food Processing and Preservation (pp. 145–180). Academic Press. <u>https://doi.org/10.1016/B978-0-12-804581-7.00006-3</u>
1790 1791 1792 1793 1794	NOP. (1995). Technical advisory panel report, processing: Ozone. https://www.ams.usda.gov/sites/default/files/media/Oz18%20Technical%20Advisory%20Panel%20Report%20%2819 95%29.pdf
1794 1795 1796 1797	NOP. (2015). Policy memorandum 15-2 (nanotechnology). National Organic Program. https://www.ams.usda.gov/sites/default/files/media/NOP-PM-15-2-Nanotechnology.pdf
1798 1798 1799 1800	NOP. (2016a). Guidance 5033-1, decision tree for classification of materials as synthetic or nonsynthetic. National Organic Program. <u>https://www.ams.usda.gov/sites/default/files/media/NOP-Synthetic-NonSynthetic-DecisionTree.pdf</u>
1801 1802 1803	NOP. (2016b). NOP 5033-2, guidance, decision tree for classification of agricultural and nonagricultural materials for organic livestock production or handling. National Organic Program. <u>https://www.ams.usda.gov/sites/default/files/media/NOP-Ag-NonAg-DecisionTree.pdf</u>
1804 1805 1806 1807	NOP. (2016c, January 15). NOP 5023: Guidance, substances used in post-harvest handling of organic products. National Organic Program. https://www.ams.usda.gov/sites/default/files/media/NOP%205023%20Post%20Harvest%20Hdlg%20Rev01.pdf
1808 1809	NOP. (2024). USDA Organic Integrity Database. https://organic.ams.usda.gov/integrity/
1810 1811	NOSB. (1995a). Final minutes of the National Organic Standards Board full board meeting, Austin, TX, October 31-November
1812 1813	4, 1995. USDA Agricultural Marketing Service. http://www.ams.usda.gov/sites/default/files/media/Thiram%20minutes%201995.pdf
1814 1815 1816 1817	NOSB. (1995b). Technical Advisory Panel report, processing: Nisin. https://www.ams.usda.gov/sites/default/files/media/Nis%20Technical%20Advisory%20Panel%20Report.pdf
1818 1819 1820 1821	NOSB. (2007). <i>Sunset: Ozone gas</i> [Formal recommendation of the National Organic Standards Board (NOSB) to the National Organic Program (NOP):]. USDA Agricultural Marketing Service. <u>https://www.ams.usda.gov/sites/default/files/media/NOP%20Final%20Sunset%20Rec%20Ozone%20Gas%20in%20Cr</u> <u>ops.pdf</u>
1822 1823 1824 1825 1826 1827	NOSB. (2010). <i>Reaffirmation of Sunset recommendations for 205.605 (a) & (b) and 205.606 materials from the April 2010</i> <i>NOSB meeting</i> [Formal recommendation of the National Organic Standards Board (NOSB) to the National Organic Program (NOP):]. USDA Agricultural Marketing Service. <u>https://www.ams.usda.gov/sites/default/files/media/NOP%20Final%20Sunset%20Rec%20Ozone%20Gas%20in%20Cr</u> <u>ops.pdf</u>
1827 1828 1829 1830 1831 1832 1833	NOSB. (2015). <i>Sunset 2017 NOSB final review handling substances §205.605(b)</i> [Formal recommendation of the National Organic Standards Board (NOSB) to the National Organic Program (NOP):]. USDA Agricultural Marketing Service. https://www.ams.usda.gov/sites/default/files/media/HS%202017%20Sunset%20Final%20Rvw%20605%28a%29_%28 b%29_606_final%20rec.pdf

1834 1835 1836	NOSB. (2020a). 2022 Sunset reviews—Handling (§§ 205.605, 205.606) [Formal recommendation of the National Organic Standards Board (NOSB) to the National Organic Program (NOP):]. USDA Agricultural Marketing Service. https://www.ams.usda.gov/sites/default/files/media/HS2022SunsetRecs_webpost.pdf
1837 1838 1839	NOSB. (2020b, October 1). <i>Meetings: National Organic Standards Board, Docket# AMS-NOP-20-0041</i> . Regulations.Gov. <u>https://www.regulations.gov/document/AMS-NOP-20-0041-0001</u>
1840 1841 1842 1843 1844 1845	NTP. (1994). NTP toxicology and carcinogenesis studies of ozone (CAS No. 10028-15-6) and Ozone/NNK (CAS No. 10028-15- 6/64091-91-4) in F344/N rats and B6C3F1 mice (inhalation studies) (National Toxicology Program Technical Report Series 440; pp. 1–314). US National Institute for Environmental Health Services National Toxicology Porgram. <u>https://pubmed.ncbi.nlm.nih.gov/12595923/</u>
1845 1846 1847	O'Donnell, C., Tiwari, B. K., Cullen, P., & Rice, R. G. (2012). Ozone in food processing. John Wiley & Sons.
1848 1849 1850	Okada, F., & Naya, K. (2012). Electrolysis for ozone water production. In V. Linkov & J. Kleperis (Eds.), <i>Electrolysis</i> (p. Ch. 12). IntechOpen. <u>https://doi.org/10.5772/51945</u>
1851 1852 1853	Orellano, P., Reynoso, J., Quaranta, N., Bardach, A., & Ciapponi, A. (2020). Short-term exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic review and meta-analysis. <i>Environment International</i> , 142, 105876. <u>https://doi.org/10.1016/j.envint.2020.105876</u>
1854 1855 1856	Organic Agricultural Promotion Act (2018). <u>https://law.moj.gov.tw/ENG/LawClass/LawAll.aspx?pcode=M0030093</u>
1850 1857 1858 1859	Organic Foods Production Act of 1990, 7 U.S.C. §6501 § 6501 (1990). https://uscode.house.gov/view.xhtml?path=/prelim@title7/chapter94&edition=prelim
1860 1861 1862	Organic Produce Wholesalers Coalition. (2020, September 29). Comments to NOSB from Organic Produce Wholesalers Coalition, Comment ID AMS-NOP-20-0041-0614. Regulations.gov. <u>https://www.regulations.gov/comment/AMS-NOP-20-0041-0614</u>
1863 1864 1865	Organic Trade Association. (2020, October 2). <i>RE: Handling subcommittee—2022 sunset reviews for §205.605, Comment ID AMS-NOP-20-0041-0729</i> . Regulations.gov. <u>https://www.regulations.gov/comment/AMS-NOP-20-0041-0729</u>
1866 1867 1868 1869	O'Sullivan, L., Bolton, D., McAuliffe, O., & Coffey, A. (2019). Bacteriophages in food applications: From foe to friend. <i>Annual Review of Food Science and Technology</i> , 10, 151–172.
1809 1870 1871 1872 1873	Palou, L., Crisosto, C. H., Smilanick, J. L., Adaskaveg, J. E., & Zoffoli, J. P. (2002). Effects of continuous 0.3 ppm ozone exposure on decay development and physiological responses of peaches and table grapes in cold storage. <i>Postharvest</i> <i>Biology and Technology</i> , 24(1), 39–48.
1874 1874 1875 1876	Pandiselvam, R., Subhashini, S., Banuu Priya, E., Kothakota, A., Ramesh, S., & Shahir, S. (2019). Ozone based food preservation: A promising green technology for enhanced food safety. <i>Ozone: Science & Engineering</i> , <i>41</i> (1), 17–34.
1870 1877 1878	Parsonics. (2024). Ultrasound technology in food manufacturing. https://parsonicscorp.com/about-us/
1878 1879 1880 1881 1882	Pauli, A., & Schilcher, H. (2009). In Vitro antimicrobial activities of essential oils monographed in the European Pharmacopoeia 6th edition. In K. H. C. Baser & G. Buchbauer, Handbook of essential oils: Science, technology, and applications (pp. 353–547). CRC Press.
1883 1884 1885	Pérez, A. G., Sanz, C., Ríos, J. J., Olias, R., & Olías, J. M. (1999). Effects of ozone treatment on postharvest strawberry quality. Journal of Agricultural and Food Chemistry, 47(4), 1652–1656.
1885 1886 1887 1888 1889	Perry, J. J., Peña-Melendez, M., & Yousef, A. E. (2019). Ozone-based treatments for inactivation of Salmonella enterica in tree nuts: Inoculation protocol and surrogate suitability considerations. <i>International Journal of Food Microbiology</i> , 297, 21–26. <u>https://doi.org/10.1016/j.ijfoodmicro.2019.02.025</u>
1890 1891 1892	Pohlman, F. W. (2012). Ozone in meat processing. In C. O' Donnell, B. K. Tiwari, P. Cullen, & R. G. Rice (Eds.), Ozone in food processing (pp. 123–136). Wiley Online Library.
1892 1893 1894	Potter, N. N., & Hotchkiss, J. H. (1998). Food science (5th ed.). Aspen.
1895 1896 1897	Prabha, V., Barma, R. D., Singh, R., & Madan, A. (2015). Ozone technology in food processing: A review. <i>Trends in Biosciences</i> , 8(16), 4031–4047.

1898 1899 1900 1901	Ravindran, P., Shylaja, M., Nirmal Babu, K., & Krishnamoorthy, B. (2004). Botany and crop improvement of cinnamon and cassia. In P. Ravindran, K. Babu, & M. Shylaja (Eds.), <i>Cinnamon and cassia: The genus Cinnamomum</i> (pp. 14–79). CRC.
1901 1902 1903 1904	Rawat, D. (2021). Essential oils in organic agriculture: A review of practices and potential. Natural Volatiles and Essential Oils, 8(2), 182–189.
1905 1906 1907 1908 1909	Rawson, A., Patras, A., Tiwari, B. K., Noci, F., Koutchma, T., & Brunton, N. (2011). Effect of thermal and non thermal processing technologies on the bioactive content of exotic fruits and their products: Review of recent advances. <i>Exotic</i> <i>Fruits: Their Composition, Nutraceutical and Agroindustrial Potential</i> , 44(7), 1875–1887. <u>https://doi.org/10.1016/j.foodres.2011.02.053</u>
1909 1910 1911 1912 1913	Rendueles, E., Omer, M. K., Alvseike, O., Alonso-Calleja, C., Capita, R., & Prieto, M. (2011). Microbiological food safety assessment of high hydrostatic pressure processing: A review. LWT - Food Science and Technology, 44(5), 1251–1260. <u>https://doi.org/10.1016/j.lwt.2010.11.001</u>
1913 1914 1915 1916 1917	Režek Jambrak, A., Vukušić, T., Donsi, F., Paniwnyk, L., & Djekic, I. (2018). Three pillars of novel nonthermal food technologies: Food safety, quality, and environment. <i>Journal of Food Quality</i> , 2018(1), 8619707. <u>https://doi.org/10.1155/2018/8619707</u>
1917 1918 1919 1920	Rice, R. G. (2012). Health and safety aspects of ozone processing. In C. O' Donnell, B. K. Tiwari, P. Cullen, & R. G. Rice (Eds.), Ozone in food processing (pp. 265–288). Wiley Online Library.
1920 1921 1922 1923	Rice, R. G., Robson, C. M., Miller, G. W., & Hill, A. G. (1981). Uses of ozone in drinking water treatment. <i>Journal (American Water Works Association)</i> , 73(1), 44–57. JSTOR.
1923 1924 1925 1926	Richards, B. L., Middleton, J. T., & Hewitt, W. B. (1958). Air pollution with relation to agronomic crops: V. Oxidant stipple of grape. Agronomy Journal, 50(9), 559–561. <u>https://doi.org/10.2134/agronj1958.00021962005000090019x</u>
1920 1927 1928 1929	Richkind, K. E. (1979). <i>Genetic responses to air pollution in mammalian populations</i> . [University of California, Los Angeles]. <u>https://www.cabidigitallibrary.org/doi/full/10.5555/19790147444</u>
1929 1930 1931 1932	Richkind, K. E., & Hacker, A. D. (1980). Responses of natural wildlife populations to air pollution. <i>Journal of Toxicology and Environmental Health</i> , 6(1), 1–10. <u>https://doi.org/10.1080/15287398009529826</u>
1932 1933 1934 1935	Ricke, S. (2003). Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. <i>Poultry Science</i> , 82(4), 632–639.
1936 1937 1938	Rideal, S. (1909). The purification of water by ozone. <i>Journal of the Royal Sanitary Institute</i> , 30(1), 32–57. https://doi.org/10.1177/146642400903000104
1939 1940 1941 1942	Ríos, JL. (2016). Essential oils: What they are and how the terms are used and defined. In V. R. Preedy (Ed.), <i>Essential Oils in Food Preservation, Flavor and Safety</i> (pp. 3–10). Academic Press. <u>https://doi.org/10.1016/B978-0-12-416641-7.00001-8</u>
1943 1944 1945 1946	Roobab, U., Shabbir, M. A., Khan, A. W., Arshad, R. N., Bekhit, A. ED., Zeng, XA., Inam-Ur-Raheem, M., & Aadil, R. M. (2021). High-pressure treatments for better quality clean-label juices and beverages: Overview and advances. <i>LWT</i> , <i>149</i> , 111828. <u>https://doi.org/10.1016/j.lwt.2021.111828</u>
1947 1948 1949 1950	Rozema, E. A., Stephens, T. P., Bach, S. J., Okine, E. K., Johnson, R. P., Stanford, K., & Mcallister, T. A. (2009). Oral and rectal administration of bacteriophages for control of Escherichia coli O157:H7 in feedlot cattle. <i>Journal of Food Protection</i> , 72(2), 241–250. <u>https://doi.org/10.4315/0362-028X-72.2.241</u>
1951 1952 1953	Sarron, E., Gadonna-Widehem, P., & Aussenac, T. (2021). Ozone treatments for preserving fresh vegetables quality: A critical review. Foods, 10(3), 605.
1953 1954 1955 1956 1957	SCHEER. (2017). Opinion on biological effects of UV-C radiation relevant to health with particular reference to UV-C lamps. European Commission's Scientific Committee on Health, Environmental and Emerging Risks. <u>https://health.ec.europa.eu/system/files/2018-03/scheer_o_002_0.pdf</u>
1957 1958 1959 1960	Schivley, G., Azevedo, I., & Samaras, C. (2018). Assessing the evolution of power sector carbon intensity in the United States. Environmental Research Letters, 13(6), 064018. <u>https://doi.org/10.1088/1748-9326/aabe9d</u>

1961 1962 1963	Schneider, T., Hahn-Löbmann, S., Stephan, A., Schulz, S., Giritch, A., Naumann, M., Kleinschmidt, M., Tusé, D., & Gleba, Y. (2018). Plant-made Salmonella bacteriocins salmocins for control of Salmonella pathovars. <i>Scientific Reports</i> , 8(1), 1– 10. <u>https://doi.org/10.1038/s41598-018-22465-9</u>
1964 1965 1966	Schwartz, R. H. (1990). Cinnamon oil: Kids use it to get high. Clinical Pediatrics, 29(3), 196.
1960 1967 1968	Seagle, E. F. (1973). Ozone as an Occupational Health Hazard. Occupational Health Nursing, 21(8), 14–17.
1969 1970 1971	Seridou, P., & Kalogerakis, N. (2021). Disinfection applications of ozone micro-and nanobubbles. <i>Environmental Science: Nano</i> , 8(12), 3493–3510.
1972 1973 1974	Shah, P., & D'Mello, P. (2004). A review of medicinal uses and pharmacological effects of <i>Mentha piperita</i> . <i>Natural Product Radiance</i> , <i>3</i> (4), 214–221.
1975 1976 1977	Sheen, S., Cassidy, J., Scullen, B., & Sommers, C. (2015). Inactivation of a diverse set of shiga toxin-producing Escherichia coli in ground beef by high pressure processing. <i>Food Microbiology</i> , <i>52</i> , 84–87. <u>https://doi.org/10.1016/j.fm.2015.07.001</u>
1977 1978 1979 1980 1981	Shukr, M., & Metwally, G. F. (2014). Evaluation of topical gel bases formulated with various essential oils for antibacterial activity against methicillin-resistant Staphylococcus aureus. <i>Tropical Journal of Pharmaceutical Research</i> , 12(6), 877– 884.
1981 1982 1983 1984 1985	Shynkaryk, M. V., Pyatkovskyy, T., Mohamed, H. M., Yousef, A. E., & Sastry, S. K. (2015). Physics of fresh produce safety: Role of diffusion and tissue reaction in sanitization of leafy green vegetables with liquid and gaseous ozone-based sanitizers. <i>Journal of Food Protection</i> , 78(12), 2108–2116. <u>https://doi.org/10.4315/0362-028X.JFP-15-290</u>
1985 1986 1987 1988 1989	Singh, G., Maurya, S., DeLampasona, M., & Catalan, C. A. (2007). A comparison of chemical, antioxidant and antimicrobial studies of cinnamon leaf and bark volatile oils, oleoresins and their constituents. <i>Food and Chemical Toxicology</i> , 45(9), 1650–1661.
1990 1991 1992 1993	Singh, N., Singh, R. K., Bhunia, A. K., & Stroshine, R. L. (2002). Efficacy of chlorine dioxide, ozone, and thyme essential oil or a sequential washing in killing Escherichia coli O157:H7 on lettuce and baby carrots. LWT, 35(8), 720–729. <u>https://doi.org/10.1006/fstl.2002.0933</u>
1994 1995 1996	Singla, M., & Sit, N. (2021). Application of ultrasound in combination with other technologies in food processing: A review. Ultrasonics Sonochemistry, 73, 105506. <u>https://doi.org/10.1016/j.ultsonch.2021.105506</u>
1997 1998	Smith, R., Cohen, S., Doull, J., Feron, V., Goodman, J., Marnett, L., Portoghese, P., Waddell, W., Wagner, B., & Adams, T. (2005). GRAS substances 22. <i>Food Technology</i> , 59(8), 24–62.
1999 2000 2001 2002	Smith, W. H. (1992). Air pollution effects on ecosystem processes. In <i>Air pollution effects on biodiversity</i> (pp. 234–260). Springer.
2002 2003 2004 2005	Stadler, E., & Fischer, U. (2020). Sanitization of Oak Barrels for Wine—A Review. Journal of Agricultural and Food Chemistry, 68(19), 5283–5295. <u>https://doi.org/10.1021/acs.jafc.0c00816</u>
2006 2007 2008	Stokes, C. S., & Streng, L. A. (1965). Production of ozone by use of plasma jet. Industrial & Engineering Chemistry Product Research and Development, 4(1), 36–39.
2009 2010 2011	Suslow, T. (2004). Ozone applications for postharvest disinfection of edible horticultural crops (8133). UCANR Publications. https://escholarship.org/content/qt3d08r5ns/qt3d08r5ns.pdf
2011 2012 2013 2014	Swiss EAER. (1997). <i>EAER Ordinance on organic farming</i> (Ordinance 910.181). https://www.fedlex.admin.ch/eli/cc/1997/2519_2519_2519/en
2014 2015 2016 2017	Swiss FOAG. (1997). Ordinance on organic farming and the labelling of organically produced products and foodstuffs (Ordinance 910.18). <u>https://www.fedlex.admin.ch/eli/cc/1997/2519_2519_2519_2519_en</u>
2017 2018 2019	Tapp, C., & Rice, R. G. (2012). Generation and control of ozone. In <i>Ozone in food processing</i> (pp. 33–54). Wiley Online Library.
2020 2021 2022	Targino de Souza Pedrosa, G., Pimentel, T. C., Gavahian, M., Lucena de Medeiros, L., Pagán, R., & Magnani, M. (2021). The combined effect of essential oils and emerging technologies on food safety and quality. <i>LWT</i> , 147, 111593. <u>https://doi.org/10.1016/j.lwt.2021.111593</u>
2023 2024 2025	Tesla, N. (1896). Apparatus for producing ozone (US Patent Office Patent 568,177).

2026 2027 2028	Tiwari, E	3. K., Brennan, C. S., Curran, T., Gallagher, E., Cullen, P. J., & O' Donnell, C. P. (2010). Application of ozone in grain processing. <i>Journal of Cereal Science</i> , <i>51</i> (3), 248–255. <u>https://doi.org/10.1016/j.jcs.2010.01.007</u>
2028 2029 2030 2031	Tiwari, H	 B., & Muthukumarappan, K. (2012). Ozone in fruit and vegetable processing. In C. O' Donnell, B. K. Tiwari, P. Cullen, & R. G. Rice (Eds.), Ozone in food processing (pp. 55–80). Wiley Online Library.
2031 2032 2033 2034	Tiwari, E	3., & Rice, R. G. (2012). Regulatory and legislative issues. In C. O'Donnell, B. Tiwari, P. Cullen, & R. Rice (Eds.), Ozone in food processing (pp. 7–17). Wiley Online Library.
2034 2035 2036 2037	Tokala, V	V. Y., Singh, Z., & Payne, A. D. (2018). Postharvest Uses of Ozone Application in Fresh Horticultural Produce. In Postharvest Biology and Nanotechnology (pp. 129–170). <u>https://doi.org/10.1002/9781119289470.ch6</u>
2037 2038 2039 2040	Tran, A.,	Pratt, M., & DeKoven, J. (2010). Acute allergic contact dermatitis of the lips from peppermint oil in a lip balm. <i>Dermatitis</i> , 21(2), 111–115.
2040 2041 2042 2043	UCAR. (2024). Ozone in the troposphere. University Corporation for Atmospheric Research. <u>https://scied.ucar.edu/learning-</u> zone/air-quality/ozone-troposphere
2043 2044 2045 2046	US EPA.	. (2016). Atmospheric concentrations of greenhouse gases. US Environmental Protection Agency. https://www.epa.gov/sites/default/files/2016-08/documents/print_ghg-concentrations-2016.pdf
2047 2048 2049	US EPA.	. (2021). Devices. In <i>Pesticide Registration Manual</i> . US Environmental Protection Agency. https://19january2017snapshot.epa.gov/pesticide-registration/pesticide-registration-manual-chapter-13- deviceshtml#devices2
2050 2051 2052	US EPA.	. (2024a). <i>Ground-level ozone pollution</i> . US Environmental Protection Agency. <u>https://www.epa.gov/ground-level-ozone-pollution</u>
2053 2054 2055	US EPA.	. (2024b). <i>Human health & environmental impacts of the electric power sector</i> . US Environmental Protection Agency. https://www.epa.gov/power-sector/human-health-environmental-impacts-electric-power-sector
2056 2057 2058 2059	US EPA.	. (2024c). <i>Trends in ozone adjusted for weather conditions</i> . US Environmental Protection Agency. https://www.epa.gov/air-trends/trends-ozone-adjusted-weather-conditions
2060 2061 2062 2063	US FDA	. (2000). Action levels for poisonous or deleterious substances in human food and animal feed (Guidance for Industry) [Guidance Document for Industry]. US Food and Drug Administration. <u>https://www.fda.gov/regulatory-</u> information/search-fda-guidance-documents/guidance-industry-action-levels-poisonous-or-deleterious-substances- <u>human-food-and-animal-feed</u>
2064 2065 2066	U.S. FDA	A. (2000, August). <i>Guidance for industry: Action levels for poisonous or deleterious substances in human food and animal feed</i> . U.S. Food & Drug Administration; FDA. <u>https://www.fda.gov/regulatory-information/search-fda-</u>
2067 2068 2069		guidance-documents/guidance-industry-action-levels-poisonous-or-deleterious-substances-human-food-and-animal- feed
2070 2071 2072 2073	US FDA	. (2004). Guidance for industry: Juice hazard analysis critical control point hazards and control guidance (Guidance for Industry) [Guidance Document for Industry]. US Food and Drug Administration. <u>https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-juice-hazard-analysis-critical-control-point-hazards-and-controls-guidance-first</u>
2074 2075 2076 2077	US FDA	. (2007). <i>Hazards & control guide for dairy foods HACCP</i> (Guidance for Processors) [Guidance Document for Industry]. US Food and Drug Administration. <u>https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-juice-hazard-analysis-critical-control-point-hazards-and-controls-guidance-first</u>
2078 2079 2080	US FDA	. (2020, July 31). <i>GRAS substances (SCOGS) database</i> . <u>https://www.fda.gov/food/generally-recognized-safe-gras/gras-</u> substances-scogs-database
2081 2082 2083	US FDA	. (2023, July 6). Understanding how the FDA regulates food additives and GRAS ingredients. FDA; FDA. https://www.fda.gov/food/food-additives-and-gras-ingredients-information-consumers/understanding-how-fda-regulates-food-additives-and-gras-ingredients
2084 2085 2086 2087	US FSIS	. (2012). <i>High pressure processing (HPP) and inspection program personnel (IPP) verification responsibilities</i> (6120.2; FSIS Directive). USDA Food Safety Inspection Service. <u>https://www.fsis.usda.gov/sites/default/files/media_file/2020-07/6120.2.pdf</u>
2088 2089 2090	US FSIS	. (2021). FSIS cooking guideline for meat and poultry products (FSIS-GD-2021-14; FSIS Guideline). USDA Food Safety Inspection Service. <u>https://www.fsis.usda.gov/sites/default/files/media_file/2020-07/6120.2.pdf</u>

2091	
2092	U.S. Pharmacopeia. (2024). Food chemicals codex (14th ed.). US Pharmacoepial Convention.
2093	
2093	USDA Specialty Crops Program. (2022). Specifications for whole shelled almonds (Commodity Specifications). USDA
2095	Agricultural Marketing Service Specialty Crops Program.
	https://www.ams.usda.gov/sites/default/files/media/Section32SpecificationforWholeShelledAlmondsAugust2022.pdf
2096	https://www.ams.usda.gov/sites/default/files/media/Section52SpecificationforwholeShelledAlmondsAugust2022.pdf
2097	
2098	Varghese, D., Ferris, K., Lee, B., Grigg, J., Pinnock, H., & Cunningham, S. (2024). Outdoor air pollution and near-fatal/fatal
2099	asthma attacks in children: A systematic review. Pediatric Pulmonology, 59(5), 1196-1206.
2100	https://doi.org/10.1002/ppul.26932
2101	
2102	Vosmaer, A. (1914). Applications of ozone. Industrial & Engineering Chemistry, 6(3), 229-232.
2103	
2103	Wang, S., Wang, J., Li, C., Xu, Y., & Wu, Z. (2021). Ozone treatment pak choi for the removal of malathion and carbosulfan
2104	pesticide residues. Food Chemistry, 337, 127755. https://doi.org/10.1016/j.foodchem.2020.127755
	pesticide residues. Food Chemistry, 557, 127755. https://doi.org/10.1010/j.100delieni.2020.127755
2106	
2107	Wei, S., Chelliah, R., Rubab, M., Oh, DH., Uddin, M. J., & Ahn, J. (2019). Bacteriophages as potential tools for detection and
2108	control of Salmonella spp. In food systems. <i>Microorganisms</i> , 7(11), 1–570.
2109	
2110	Welti-Chanes, J., Morales-de la Peña, M., Jacobo-Velázquez, D. A., & Martín-Belloso, O. (2017). Opportunities and challenges
2111	of ultrasound for food processing: An industry point of view. In D. Bermudez-Aguirre (Ed.), Ultrasound: Advances for
2112	Food Processing and Preservation (pp. 457–497). Academic Press. https://doi.org/10.1016/B978-0-12-804581-
2113	7.00019-1
2114	
2115	Whittington, R., Winston, M. L., Melathopoulos, A. P., & Higo, H. A. (2000). Evaluation of the botanical oils neem, thymol, and
2116	canola sprayed to control Varroa jacobsoni Oud.(Acari: Varroidae) and Acarapis woodi (Acari: Tarsonemidae) in
2117	colonies of honey bees (Apis mellifera L., Hymenoptera: Apidae). American Bee Journal, 140(7), 567–572.
2117	colonies of noncy bees (Apis menigera L., Hymenopiera, Apidae). American Bee Journal, 140(7), 507–572.
2119	Wińska, K., Mączka, W., Łyczko, J., Grabarczyk, M., Czubaszek, A., & Szumny, A. (2019). Essential Oils as Antimicrobial
2120	Agents—Myth or Real Alternative? Molecules, 24(11). https://doi.org/10.3390/molecules24112130
2121	
2122	Wojtowicz, J. A. (2005). Ozone. In Kirk-Othmer Encyclopedia of Chemical Technology.
2123	https://doi.org/10.1002/0471238961.1526151423151020.a01.pub2
2124	
2125	Woolf, A. (1999). Essential oil poisoning. Journal of Toxicology: Clinical Toxicology, 37(6), 721-727.
2126	
2120	Yang, SC., Lin, CH., Sung, C. T., & Fang, JY. (2014). Antibacterial activities of bacteriocins: Application in foods and
2127	pharmaceuticals. Frontiers in Microbiology, 5, 241.
	pharmaceutears. Fromers in Microbiology, 5, 241.
2129	
2130	Yusuf, M. (2018). Natural antimicrobial agents for food biopreservation. In A. M. Grumezescu & A. M. Holban (Eds.), Food
2131	Packaging and Preservation (pp. 409-438). Academic Press. <u>https://doi.org/10.1016/B978-0-12-811516-9.00012-9</u>
2132	
2133	Zarzuelo, A., & Crespo, E. (2003). The medicinal and non-medicinal uses of thyme. In E. Stahl-Biskup & F. Sáez (Eds.), Thyme:
2134	The genus Thymus (Vol. 24, pp. 1–43). CRC Press.
2135	
2136	Zhang, Y., Liu, X., Wang, Y., Zhao, F., Sun, Z., & Liao, X. (2016). Quality comparison of carrot juices processed by high-
2137	pressure processing and high-temperature short-time processing. <i>Innovative Food Science & Emerging Technologies</i> ,
2138	33, 135–144. https://doi.org/10.1016/j.ifset.2015.10.012
2138	55, 155 117. <u>https://doi.org/10.1010/j.htsc/2015.10.012</u>
	Zhang V, Ma V, Fang F, Chang D, Chang L, Wang H, Ling H, 6 Li M (2021) D, 1 (1997) (1997) (1997)
2140	Zhang, Y., Ma, Y., Feng, F., Cheng, B., Shen, J., Wang, H., Jiao, H., & Li, M. (2021). Respiratory mortality associated with
2141	ozone in China: A systematic review and meta-analysis. <i>Environmental Pollution</i> , 280, 116957.
2142	https://doi.org/10.1016/j.envpol.2021.116957
2143	