United States Department of Agriculture Agricultural Marketing Service | National Organic Program Document Cover Sheet https://www.ams.usda.gov/rules-regulations/organic/petitioned-substances

Document Type:

□ National List Petition or Petition Update

A petition is a request to amend the USDA National Organic Program's National List of Allowed and Prohibited Substances (National List).

Any person may submit a petition to have a substance evaluated by the National Organic Standards Board (7 CFR 205.607(a)).

Guidelines for submitting a petition are available in the NOP Handbook as NOP 3011, National List Petition Guidelines.

Petitions are posted for the public on the NOP website for Petitioned Substances.

⊠ Technical Report

A technical report is developed in response to a petition to amend the National List. Reports are also developed to assist in the review of substances that are already on the National List.

Technical reports are completed by third-party contractors and are available to the public on the NOP website for Petitioned Substances.

Contractor names and dates completed are available in the report.

Ammonium Bicarbonate and Carbonate

Handling/Processing

	22	
Chemical Names:	23	CAS Numbers:
ammonium carbonate $(INH_4)_2CO_3$	24	ammonium carbonate: 506-87-6
• ammonium sesquicarbonate	25	Mixture of ammonium bicarbonate and
• carbonic acid, diammonium salt	26	ammonium carbamate: 8000-73-5
• diammonium carbonate	27	ammonium dicardonate: 1066-35-7
ammonium bicarbonate ($N\Pi_4HCO_3$)	20 20	Other Codes:
ammonium acid carbonate	29 30	ammonium carbonate:
• ammonium nydrogen carbonate	31	EC number: 223-786-0
• carbonic acid, monoammonium sait	32	• E number: E503(i)
monoammonium carbonate	32	 LINII: PDP601CN28 (NI5VT0EK1)
Other Nemon	3/	when a mixture of ammonium
AmPion halver's ammonia: historhonate of	34	bicarbonate and ammonium
amponia: bicarbi bartshorp; salt of	36	carbamate)
hartshorn; cal valatile; smalling calta	37	ammonium bicarbonate:
fiantshorn, sar volatile, sinelling saits	38	• FC number: 213-911-5
Trade Names:	39	 E number: E503(ii)
Sold as baker's ammonia or ammonium	40	 UNII: 45IP4345C9
carbonate/bicarbonate	10	
Summary This full scope technical report provides informa support the sunset review of ammonium bicarbo carbonate, listed at § 205.605(b)(5). This report fo	of Petition tion to the onate, liste	oned Use e National Organic Standards Board (NOSB) ed at 7 CFR 205.605(b)(4), and ammonium the uses of these materials in organic process
Summary This full scope technical report provides informa support the sunset review of ammonium bicarbo carbonate, listed at § 205.605(b)(5). This report fo and handling, as leavening agents only (per the s In 1995, a Technical Advisory Panel (TAP) devel- and carbonate (NOSB, 1995). No technical report substances were included on the National List of to as the "National List") with the first publication (<u>65 FR 80548</u> , December 21, 2000). The NOSB has 2020 (NOSB, 2009; NOP, 2010; NOSB, 2015, 2020) As ammonium bicarbonate and carbonate are bo annotations for both substances specify that they We use the term "ammonium carbonates" (plura	of Petitic tion to the nate, listed cuses on substance oped a re- s have be Allowed on of the P recommenda- the listed a rare "for an of the r	e National Organic Standards Board (NOSB) ed at 7 CFR 205.605(b)(4), and ammonium the uses of these materials in organic processi s' annotations). port for the NOSB on ammonium bicarbonate en written for these materials since. These and Prohibited Substances (hereafter referred National Organic Program (NOP) Final Rule ended their renewal in 2005, 2010, 2015, and at § 205.605(b), synthetic forms are allowed. T use only as a leavening agent."
Summary This full scope technical report provides informa support the sunset review of ammonium bicarbo carbonate, listed at § 205.605(b)(5). This report fo and handling, as leavening agents only (per the se In 1995, a Technical Advisory Panel (TAP) devel- and carbonate (NOSB, 1995). No technical report substances were included on the National List of to as the "National List") with the first publication (65 FR 80548, December 21, 2000). The NOSB has 2020 (NOSB, 2009; NOP, 2010; NOSB, 2015, 2020) As ammonium bicarbonate and carbonate are bo annotations for both substances specify that they We use the term "ammonium carbonates" (plura bicarbonate and ammonium carbonate (actually carbamate).	of Petitic tion to the nate, liste cuses on substance oped a re- s have be Allowed on of the P a recommendation the listed a r are "for a mixture of Petitic	e National Organic Standards Board (NOSB) ed at 7 CFR 205.605(b)(4), and ammonium the uses of these materials in organic process s' annotations). port for the NOSB on ammonium bicarbonate en written for these materials since. These and Prohibited Substances (hereafter referred National Organic Program (NOP) Final Rule ended their renewal in 2005, 2010, 2015, and at § 205.605(b), synthetic forms are allowed. T use only as a leavening agent." eferring generically to both ammonium e of ammonium bicarbonate and ammonium
Summary This full scope technical report provides informa support the sunset review of ammonium bicarbo carbonate, listed at § 205.605(b)(5). This report fo and handling, as leavening agents only (per the se In 1995, a Technical Advisory Panel (TAP) devel- and carbonate (NOSB, 1995). No technical report substances were included on the National List of to as the "National List") with the first publication (65 FR 80548, December 21, 2000). The NOSB has 2020 (NOSB, 2009; NOP, 2010; NOSB, 2015, 2020) As ammonium bicarbonate and carbonate are bo annotations for both substances specify that they We use the term "ammonium carbonates" (plura bicarbonate and ammonium carbonate (actually <u>carbamate</u>).	of Petitic tion to the mate, listed cuses on substance oped a re- s have be a not the have a recommendary the histed a a recommendary the histed a a mixture a of Petiti	e National Organic Standards Board (NOSB) ed at 7 CFR 205.605(b)(4), and ammonium the uses of these materials in organic process s' annotations). port for the NOSB on ammonium bicarbonate en written for these materials since. These and Prohibited Substances (hereafter referre National Organic Program (NOP) Final Rule ended their renewal in 2005, 2010, 2015, and at § 205.605(b), synthetic forms are allowed. T use only as a leavening agent." eferring generically to both ammonium of ammonium bicarbonate and ammonium
Summary This full scope technical report provides informa support the sunset review of ammonium bicarbo carbonate, listed at § 205.605(b)(5). This report fo and handling, as leavening agents only (per the s In 1995, a Technical Advisory Panel (TAP) devel- and carbonate (NOSB, 1995). No technical report substances were included on the National List of to as the "National List") with the first publication (65 FR 80548, December 21, 2000). The NOSB has 2020 (NOSB, 2009; NOP, 2010; NOSB, 2015, 2020) As ammonium bicarbonate and carbonate are bo annotations for both substances specify that they We use the term "ammonium carbonates" (plura bicarbonate and ammonium carbonate (actually <u>carbamate</u>). <u>Characterization</u>	of Petitic tion to the mate, liste cuses on substance oped a re- s have be a have be a have be Allowed on of the I a recommendary of the Isted a r are "for a mixture of Petiti	e National Organic Standards Board (NOSB) ed at 7 CFR 205.605(b)(4), and ammonium the uses of these materials in organic processi s' annotations). port for the NOSB on ammonium bicarbonate en written for these materials since. These and Prohibited Substances (hereafter referred National Organic Program (NOP) Final Rule ended their renewal in 2005, 2010, 2015, and at § 205.605(b), synthetic forms are allowed. T use only as a leavening agent." eferring generically to both ammonium e of ammonium bicarbonate and ammonium
This full scope technical report provides informa support the sunset review of ammonium bicarbo carbonate, listed at § 205.605(b)(5). This report fo and handling, as leavening agents only (per the se In 1995, a Technical Advisory Panel (TAP) devel- and carbonate (NOSB, 1995). No technical report substances were included on the National List of to as the "National List") with the first publication (65 FR 80548, December 21, 2000). The NOSB has 2020 (NOSB, 2009; NOP, 2010; NOSB, 2015, 2020) As ammonium bicarbonate and carbonate are bo annotations for both substances specify that they We use the term "ammonium carbonates" (plura bicarbonate and ammonium carbonate (actually carbamate). Characterization <u>Composition of the Substance</u> Ammonium bicarbonate and carbonate are salts	of Petitic tion to the nate, liste cuses on substance oped a re- s have be Allowed on of the N recommendary of the Isted a rare "for al) when r a mixture of Petitic	e National Organic Standards Board (NOSB) ed at 7 CFR 205.605(b)(4), and ammonium the uses of these materials in organic processi s' annotations). port for the NOSB on ammonium bicarbonate en written for these materials since. These and Prohibited Substances (hereafter referred National Organic Program (NOP) Final Rule ended their renewal in 2005, 2010, 2015, and at § 205.605(b), synthetic forms are allowed. T use only as a leavening agent." eferring generically to both ammonium oned Substance

69 the conjugate base of the bicarbonate (HCO₃·) anion, which is itself the conjugate base of carbonic

- 70 acid (H₂CO³) (Ucko, 1982a). The term "conjugate base" refers to a compound remaining after an acid
- loses a proton (H⁺). Both ammonium and carbonate are ubiquitous in the environment.
- 73 Complex interactions between ammonia, water, and carbon dioxide lead to the formation of various solid
- phases referred to as "ammonium carbonates" and include (Brondi et al., 2023; Fortes et al., 2014;
 Howard, 2019):
 - ammonium carbonate monohydrate [(NH₄)₂CO₃ · H₂O]
 - ammonium sesquicarbonate monohydrate $\{(NH_4)_4[H_2(CO_3)_3] \cdot H_2O\}$
 - ammonium bicarbonate (NH₄HCO₃)
 - ammonium carbamate (NH₄CO₂NH₂)
- 79 80

77

78

- 81 Ammonium bicarbonate
- 82 Ammonium bicarbonate is the monoammonium salt of carbonic acid with the formula NH₄HCO₃ and a
- 83 molecular weight of 79.06 g/mol (see *Figure 1*) (National Center for Biotechnology Information, 2024a).

85 86

87

Figure 1: Molecular structure of ammonium bicarbonate

88 Ammonium carbonate

89 Ammonium carbonate is the diammonium salt of carbonic acid with the generalized formula (NH₄)₂CO₃

- 90 and a molecular weight of 96.09 g/mol (see Figure 2) (National Center for Biotechnology Information,
- 91 2024b). Ammonium carbonate only forms in carefully controlled conditions that are difficult to achieve in
- 92 production facilities (Zapp et al., 1985). Commercially available ammonium carbonate is not pure and
- may even be composed of entirely different compounds, typically with a large proportion of ammonium
- 94 carbamate (Fortes et al., 2014; Howard, 2019).
- 95
- 96 The FDA describes the standard of identity of ammonium carbonate used in food, as a leavening agent or
- 97 pH control agent, to be a mixture of ammonium bicarbonate and ammonium carbamate at
 98 21 CFR 184.1137 (see *Approved Legal Uses of the Substance*). The FDA recognizes this mixture as the GRAS
- 21 CFR 184.1137 (see <u>Approved Legal Uses of the Substance</u>). The FDA recognizes this mixture as the GRAS
 form of ammonium carbonate (CAS 8000-73-5) rather than pure ammonium carbonate (CAS 506-87-6).
- 100 Commercial ammonium carbonate products for food use are usually equal mixtures of ammonium
- 101 bicarbonate and ammonium carbamate [(NH₄)NH₂CO₂] (Royal Society of Chemistry, 2024; Zapp et al.,
- 102 1985), and these mixtures will be a focal point of this report.
- 103

104 105 106

Figure 2: Molecular structure of ammonium carbonate

107 Source or Origin of the Substance

- 108 Ammonium bicarbonate occurs naturally on earth in the mineral teschemacherite, observed in guano
- 109 deposits in South America and South Africa, and in geothermal waters in New Zealand (Howard, 2019).
- 110 Other ammonium carbonates are not known to occur naturally (Fortes et al., 2014). Fortes et al. (2014)
- 111 hypothesize that ammonium carbonate monohydrate may occur in seabird fecal deposits in areas

- adjacent to glaciers, but this has not been directly observed due to the instability of ammonium carbonateabove freezing temperatures.
- 114

115 Ammonium carbonates are manufactured by the reaction of ammonia sourced from the synthetic Haber-

- Bosch process with carbon dioxide sourced from industrial processes like power generation, cement
- 117 manufacturing, or fossil fuel processing (Brondi et al., 2023). See <u>Evaluation Question #1B</u> for more
- 118 information on manufacturing processes. The FDA GRAS standard of identity also describes ammonium
- 119 carbonate prepared by sublimation of a mixture of ammonium sulfate and calcium carbonate.
- 120

121 Properties of the Substance

122

123 Ammonium bicarbonate

124 Ammonium bicarbonate is a colorless to white solid occurring as crystalline masses or powder, with a 125 faint odor of ammonia (see <u>*Table 1*</u>). Ammonium bicarbonate is the only compound in the ternary NH_{3} -126 CO_2 - H_2O system that is stable above freezing (32 °F/0 °C) (Howard, 2019).

127

128 Ammonium bicarbonate thermally decomposes into ammonia gas, carbon dioxide, and water (Penfield &

- 129 Campbell, 1990). Ammonium bicarbonate has advantages over baking soda (sodium bicarbonate) or
- 130 baking powder (usually sodium bicarbonate and acid salt) because it produces a greater volume of gas
- 131 from the same mass of leavening agent (Howard, 2019). The absence of a residual salt in this heating
- 132 reaction is desirable in baked goods if the ammonia gas is allowed to escape completely (Penfield &
- 133 Campbell, 1990). Since remaining ammonia imparts an unpleasant taste, the use of ammonium
- bicarbonate as a leavening agent is limited to products with a large surface area, flat shape, and low
- 135 moisture content (Howard, 2019; Penfield & Campbell, 1990). The low moisture content of finished baked
- 136 goods is important since ammonia is soluble in water, and it may be retained in bulky baked goods
- 137 rendering them unpalatable (Howard, 2019).
- 138
- 139 Other common chemical leavening agents like baking soda (typically sodium bicarbonate) and baking
- 140 powder (typically <u>sodium</u> bicarbonate + an acid) rely on the reaction of an alkaline salt with a weak acid
- 141 to produce carbon dioxide gas (Canali et al., 2020). Baking soda requires the addition of an acid to initiate
- 142 the reaction, while baking powder already contains a dry, weak acid combined with sodium bicarbonate.
- 143 By contrast, <u>ammonium</u> bicarbonate dissociates into carbon dioxide and ammonia gas upon heating
- 144 without the addition of an acid (Canali et al., 2020).
- 145
- 146 147

 Table 1: Chemical and physical properties of ammonium bicarbonate (ECHA, 2023b; National Center for Biotechnology Information, 2024a).

Property	Value
Physical State and Appearance	Crystalline solid
Odor	Faintly ammoniacal
Taste	Slightly alkaline
Color	Colorless or white
Molecular Weight (g/mol)	79.06
Density (g/cm ³)	1.59
pН	Approx. 8 (5% solution)
Solubility (g/100mL)	17.4
Boiling Point (°C)	n/a
Melting Point (°C)	107 (decomposes)
Vapor Pressure (kPa at 25.4°C)	7.85
Stability	Stable at room temperature, decomposes upon heating
Reactivity	Nonflammable, decomposes in heat

148

149 Ammonium carbonate

- 150 Ammonium carbonate is a white, crystalline solid or powder consisting of flat, columnar, or prismatic
- 151 crystals that is very soluble in water (see <u>*Table 2*</u>). Ammonium carbonate is only stable at freezing
- 152 temperatures and transforms to ammonium bicarbonate (by loss of one ammonia group) at
- approximately 0 °C (32 °F) (Fortes et al., 2014; Howard, 2019).

155 156 Table 2: Chemical and physical properties of ammonium carbonate (ECHA, 2023a; National Center for Biotechnology Information, 2024b).

Property	Value
Physical State and Appearance	Crystals or powder
Odor	Strongly ammoniacal
Taste	Strongly ammoniacal
Color	Colorless or white
Molecular Weight (g/mol)	96.09
Density (g/cm ³ at 20°C)	1.5
pН	Approx. 8.6 (5% solution)
Solubility (g/100mL)	100 (water)
рКа	рКа1: 9.25; рКа2: 6.35
Boiling Point (°C)	n/a
Melting Point (°C)	58 (decomposes)
Stability	Decomposes to NH ₃ and CO ₂ when heated
Reactivity	Nonflammable, air-sensitive, decomposes in heat

157

158 Ammonium carbamate

- 159 We include a limited description of the properties of ammonium carbamate (not to be confused with
- 160 carbonate) due to its explicit inclusion in the FDA standard of identity of ammonium carbonate, as well
- 161 as its known occurrence in products sold as ammonium carbonate.
- 162

163 Ammonium carbamate forms white crystals and has an ammoniacal odor (National Center for

- Biotechnology Information, 2024c). It is soluble in water and gradually loses ammonia and carbon 164
- 165 dioxide to the air within minutes, transforming to ammonium carbonate (Howard, 2019; National Center
- for Biotechnology Information, 2024c). It is relatively stable in a closed container in a cool, dry 166
- environment (Howard, 2019). 167 168

169 **Specific Uses of the Substance**

170 The primary use for ammonium carbonates are as leavening agents for low-moisture baked goods, such

171 as dry cookies and crackers (Miller, 2016). Specifically, ammonium carbonates are chemical leavening

172 agents that work to expand and aerate the structure of the finished baked good by releasing gases into the

173 batter (De Leyn, 2014; Sumnu & Sahin, 2008). Moisture in low-moisture baked goods is limited to five

174 percent because the ammonia gas, produced as ammonium carbonates decompose during baking,

175 dissolves in water and is retained in moist products, creating a sharp, pungent odor and an unpleasant

taste (Kukurová & Ciesarová, 2024; Miller, 2016). Drier products do not retain the ammonia gas, and the 176

- 177 strong odor dissipates by the end of the baking process (Sadd et al., 2008).
- 178

179 While leavening is the primary use of ammonium bicarbonate, it is also used as a nitrogen source for 180 yeast cultures and as smelling salts (Zapp et al., 1985). Ammonium carbonate may also be used as a food

181

acidity regulator, specifically as an optional neutralizing additive in cacao products (21 CFR part 163), 182 and Asian yellow alkaline noodle doughs (Huang & Miskelly, 2016; National Center for Biotechnology

- 183 Information, 2024b).

184

185 Approved Legal Uses of the Substance

Food manufacturers use ammonium bicarbonate and carbonate as processing aids. Therefore, the 186 relevant approved legal uses of these substances are regulated by the FDA (US FDA, 2023). 187

- 188 Ammonium bicarbonate is Generally Recognized as Safe (GRAS) without limitations other than current good manufacturing practice. The FDA notes its use as a dough softener, leavening agent, 189 190 pH control agent, and texturizer (see Ammonium bicarbonate FDA standard of identity, below).
- Ammonium carbonate is also GRAS without limitations other than current good manufacturing 191 • 192 practice. The FDA notes its use as a leavening agent and pH control agent (see Ammonium 193 carbonate FDA standard of identity, below).
- 194

195	The FDA lists both substances as ingredients in the production of other products, such as caramel
196	(21 CFR 73.85), cacao nibs (§ 163.110), breakfast cocoa (§ 163.112), and chocolate liquor (§ 163.111).
197	
198	Ammonium bicarbonate FDA standard of identity
199	The FDA describes the standard of identity for ammonium bicarbonate as follows (21 CFR 184.1135):
200	(a) Ammonium bicarbonate (NH_4HCO_3 , CAS Reg. No. 1066-33-7) is prepared by reacting gaseous
201	carbon dioxide with aqueous ammonia. Crystals of ammonium bicarbonate are precipitated from
202	solution and subsequently washed and dried.
203	(b) The ingredient meets the specifications of the Food Chemicals Codex, 3d Ed. (1981), p. 19, which
204	is incorporated by reference
205	(c) In accordance with $\$$ 184 1(b)(1) the ingredient is used in food with no limitation other than
205	(c) In accordance with § 101.1(b)(1), the ingredient is used in food which is indication of the ingredient as CRAS as a direct
200	human food ingredient is based upon the following current good manufacturing practice
207	conditions of use:
200	(1) The incredient is used as a dough strengthener as defined in § 170.2(a)(c) of this charter a
209	(1) The ingredient is used as a dough strengthener as defined in § 170.5(0)(6) of this chapter, a
210	leavening agent as defined in § 1/0.5(0)(17) of this chapter; a pH control agent as defined in
211	§ 1/0.3(0)(23) of this chapter; and a texturizer as defined in § 1/0.3(0)(32) of this chapter.
212	(2) The ingredient is used in food at levels not to exceed current good manufacturing practice.
213	(d) Prior sanctions for this ingredient different from the uses established in this section do not exist
214	or have been waived.
215	
216	The FDA also states that ammonium bicarbonate is GRAS as a general-purpose food additive at
217	§ 582.1135 when used in accordance with good manufacturing or feeding practice.
218	
219	The third edition of the Food Chemicals Codex (National Research Council, 1981) specifies the following
220	for ammonium bicarbonate:
221	
222	Description: White crystals or a crystalline powder having a slight odor of
223	ammonia. At a temperature of 60° or above, it volatilizes rapidly, dissociating into
224	ammonia, carbon dioxide, and water, but at room temperature it is quite stable.
225	One g dissolves in about 6 ml of water. It is insoluble in alcohol.
226	
227	Identification: It gives positive tests for Ammonium, page 515, and for Bicarbonate,
228	page 516.
229	
230	Assay: not less than 99.0% of NH_4HCO_3 .
231	Arsenic (as As): Not more than 3 ppm.
232	Chloride: Not more than 0.003%.
233	Heavy Metals (as Pb): Not more than 10 ppm.
234	Nonvolatile Residue: Not more than 0.05% (0.55% for products containing a
235	suitable anticaking agent).
236	Sulfur Compounds: Not more than 0.007%.
237	
238	(Various test descriptions then follow in the monograph, which we have omitted
230	here)
237	
240	Ammonium carbonate FDA standard of identity
241	The FDA describes the standard of identity for ammonium carbonate as follows (21 CFR 184 1137).
242	(a) Ammonium carbonate $[(NH_i)^2 CO_b CAS Reg. No. 8000.73.5]$ is a mixture of ammonium
273 244	hiserbonate (NH, HCO) and ammonium carbomate (NH, COONH). It is propared by the
244	sublimation of a mixture of ammonium sulfate and calcium carbonate and accura as a white
243 246	submination of a mixture of animomum sunate and calcium cardonate and occurs as a white
240 247	powder or a nard, white or translucent mass.
24/	(b) The ingredient meets the specifications of the Food Chemicals Codex, 3d Ed. (1981), p. 19, which
248	is incorporated by reference

249 250	(c) In accordance with § 184.1(b)(1), the ingredient is used in food with no limitation other than current good manufacturing practice. The affirmation of this ingredient as GRAS as a direct
251	human food ingredient is based upon the following current good manufacturing practice
252	conditions of use:
253	(1) The ingredient is used as a leavening agent as defined in § 170.3(o)(17) of this chapter and a
254	pH control agent as defined in § 170.3(0)(23) of this chapter.
255	(2) The ingredient is used in food at levels not to exceed current good manufacturing practice.
256	(d) Prior sanctions for this ingredient different from the uses established in this section do not exist
257	or have been walved.
250	The FDA also states that ammonium carbonate is CRAS as a general nurness food additive at \$582,1137
259	when used in accordance with good manufacturing or feeding practice
260	when used in accordance with good manufacturing of recume practice.
262	The third edition of the Food Chemicals Codex (National Research Council, 1981) specifies the following
263	for ammonium carbonate:
264	
265	Description: Ammonium carbonate consists of ammonium bicarbonate
266	(NH_4HCO_3) and ammonium carbamate $(NH_2.COONH_4)$ in varying proportions.
267	It occurs as a white powder or as hard, white or translucent masses. Its solutions
268	are alkaline to litmus. On exposure to air it becomes opaque and is finally
269	converted into porous lumps or a white powder of ammonium bicarbonate due to
270	the loss of ammonia and carbon dioxide. One g dissolves slowly in about 4 ml of
271	water.
272	
273	Identification: When heated, it volatilizes without charring and the vapor is
274	alkaline to moistened litmus paper. A 1 in 20 solution effervesces upon the
275	addition of an acid.
276	
277	Assay: Not less than 30.0% and not more than 34.0% of NH3•
278	Arsenic (as As): Not more than 3 ppm.
279	Unioride: Not more than 0.005%.
280	Nonvolatile Residue: Not more than 0.05%
281	Sulfur Compounds: Not more than 0.005%
283	Sundi Compounds. Not more than 0.000 %.
284	(Various test descriptions then follow in the monograph, which we have omitted
285	here.)
286)
287	Action of the Substance
288	Ammonium carbonates thermally decompose during baking, thereby functioning as leavening agents in
289	baked goods (Kweon et al., 2014; Miller, 2016). The decomposition products are ammonia gas, carbon
290	dioxide gas, and water (including steam), as shown in <u>Equation 1</u> . These products cause the expansion
291	and texturization of baked goods, creating a "lightness" in the crumb structure (De Leyn, 2014; Miller,
292	2016; Sadd et al., 2008). Carbon dioxide and ammonia off-gas with time. Present in all baked goods, steam
293	is formed from the heating of water; however, it is also created in the decomposition of the ammonium
294	carbonates (Sumnu & Sahin, 2008). Steam contributes to the pressure increase inside the batter, resulting
295	in a greater volume in the finished product.
296	haat
297	$NH_4HCO_3 \xrightarrow{neur} NH_3 + CO_2 + H_2O$
298	(ammonium bicarbonate) \rightarrow (ammonia) + (carbon dioxide) + (water)
299	Equation 1
300	

- According to Sharma et. al. (2017), the general leavening process can be broken down into three stages:
- Flour is mixed with water and leavening agents, incorporating all the materials into the dough's structure and creating air pockets.
 - 2. The dough is proofed when necessary.¹
 - 3. The product is baked, releasing gases and creating a leavening action throughout the dough.
- 305 306

Released gases interact with the air that is introduced as the dough is mixed, and the water present in the mixture (Miller, 2016). Air pockets allow for released gas bubbles to expand, using the available air as nuclei for growth (Miller, 2016; van der Sman, 2021). Carbon dioxide is the first and primary gas released into these pockets (De Leyn, 2014; van der Sman, 2021). The carbon dioxide bubbles expand until they

- 311 rupture, at which point the secondary gas, ammonia, begins to escape from the dough using the same 312 releasing mechanism as carbon dioxide (van der Sman, 2021). The bicarbonate ion is the only gas
- contributor until the carbon dioxide bubble rupture event. The third and final gas present is water in the
- 314 form of steam (Miller, 2016).
- 315
- 316 The release of carbon dioxide and ammonia does not affect the pH or color development of the baked
- 317 product (Gélinas, 2022; Kweon et al., 2014). However, as mentioned in *Specific Uses of the Substance*,
- 318 moisture levels above five percent, especially in bulky products, traps ammonia in the dough, preventing
- off-gassing and causing an unpleasant ammoniacal flavor (Howard, 2019; Kukurová & Ciesarová, 2024;
- 320 Miller, 2016). In baked goods with less than 5% moisture content, the ammonia gas escapes completely by
- 321 the end of the baking process (van der Sman, 2021). Therefore, ammonium carbonates are not suitable for
- 322 products such as cakes and sponges where the moisture content would result in the presence of residual 323 ammonia.
- 323 324

325 <u>Combinations of the Substance</u>

326 The industrial process used to produce ammonium carbonate and bicarbonate generates several

- 327 ammonium salts (Ivanchenko et al., 2020). The final ammonium carbonates mixture may contain
- 328 ammonium carbonates and carbamates in different proportions (Efimov et al., 1982; Ivanchenko et al.,
- 329 2020; Sutter & Mazzotti, 2017) as described in *<u>Composition of the Substance</u>*.
- 330

All of these ammonia salts are unstable and gradually decompose, releasing ammonia, carbon dioxide,

- and water (Ivanchenko et al., 2020; Weston et al., 2000; Zapp et al., 1985). Both carbamate and carbonate
- decompose to yield bicarbonate (Zapp et al., 1985). Ammonium bicarbonate is the most stable salt and the
- commercial product's main component (Ivanchenko et al., 2020). Zapp et al. (1985) mentioned that
- equimolar mixtures of ammonium carbonate and ammonium bicarbonate are sold as ammonium
- carbonate. This is in agreement with the reported composition of the food-grade ammonium carbonates
- 337 present in technical data sheets, which often indicate that the product is a mixture of ammonium
- bicarbonate and ammonium carbamate (BASF, 2024; Keystone Universal, 2017; Spectrum Chemical,
- 339 2014).340
- 341 Ammonium carbonates tend to cake, and their flowability is maintained by anticaking additives such as
- 342 (Zapp et al., 1985):
 - cornstarch
 - magnesium oxide
 - magnesium carbonate
- 345 346

343

344

- The most popular anticaking agent added to ammonium carbonates is magnesium carbonate (at 3500 to
 10,000 parts per million) (BASF, 2024). From the above list, corn starch is the only additive currently
 permitted as an anticaking agent under 7 CFR 205.606.
- 350
- 351 Research on microencapsulation of ammonium carbonates using palm stearin and carnauba wax exists
- 352 (Ding et al., 2018), but encapsulated ammonium carbonates are not yet popular in the marketplace.
- 353 AMPAK Company launched a line of encapsulated baking ingredients in 2020, including encapsulated

¹ Proofing: resting and allowing the dough to rise before baking.

ammonium carbonate (Ingredients Network, 2020); however, we could not find these products when
 searching online, and we could not identify the nature of the encapsulating agent used in this product
 line.

357 358

359

365 366

367

Status

360 <u>Historic Use</u>

Records of ammonium bicarbonate use date back to the 14th century, where English manuscripts mention "salt of hartshorn" as an expanding agent for certain baked goods (Zapp et al., 1985). Ammonium salt of hartshorn is produced from the dry distillation (heating) of antlers, hooves, and leather, and consists of (Gélinas, 2022; Zapp et al., 1985):

• ammonium bicarbonate (NH₄HCO₃)

• ammonium carbamate (NH₄CO₂NH₂)

• ammonium carbonate ((NH₄)₂CO₂ • H₂O)

The quantity of use was and still is limited to small amounts, about 0.1% in modern recipes, to avoid the

reported unpleasant taste if used in excess (Huber & Schoenlechner, 2017; van der Sman, 2021).

According to Page (2013), a report from 1838 instructed bakers to use one quarter ounce of salt of hartshorn for every pound of flour.

373

By the beginning of the 19th century, salt of hartshorn was manufactured on a semi-industrial scale (Zapp et al., 1985). The first baking powder patent was issued in 1836 and included salt of hartshorn (Gélinas,

et al., 1985). The first baking powder patent was issued in 1836 and included salt of hartshorn (Gélinas,
2022).² This patent was not specifically for ammonium carbonates, as the ingredient was well-known

prior to the patent. The first manufacturing patent specific to ammonium carbonate was issued in 1888 in

Great Britain, quickly followed by the first ammonium bicarbonate manufacturing patent, issued in 1893

Gélinas, 2022). By 1919, large-scale production associated with the industrial synthesis of ammonia

replaced previous production methods (Zapp et al., 1985). As a result of large-scale production, salt of

hartshorn became a mixture of pure ammonium bicarbonate and ammonium carbamate, with a 32.5%

ammonia (NH₃) content.

383

In modern times, ammonium carbonates are commonly combined with other leavening agents, such as
 sodium bicarbonate, which have a longer shelf-life (Gélinas, 2022). Ammonium carbonates are limited to
 certain flat, low-moisture baked goods, some of which feature the material as a signature ingredient

387 (Kollemparembil et al., 2023; Kukurová & Ciesarová, 2024). Notable examples of this are black-and-white

cookies and ammonia cookies. Other products that may use ammonium bicarbonate alone or in

combination with other leavening agents are (Bejosano & Waniska, 2004; Kukurová & Ciesarová, 2024;

- 390 Kweon et al., 2014):
- 391•biscuits
- 392•cookies
- 393• crackers
- 394•wafers
- 395 bread
- 396 ready-to-eat cereals
- 397 confectioneries
- 398 crisp breads
- breakfast cereals
- 400 cakes
- 401 pastries
- 402 gingerbread
- 403 wheat tortillas

 $^{^2}$ The 1836 patented baking powder was also composed of: baker's salt (ammonium carbonates mixed with magnesium, calcium, aluminum, and iron bicarbonates), carbonate of magnesia, magnesium bicarbonate, potassium carbonate, sodium bicarbonate, and sodium carbonate.

405 Organic Foods Production Act (OFPA), USDA Final Rule

- OFPA (1990) does not include any reference to ammonium bicarbonate or carbonate. 406
- 407

404

408 For handling purposes, USDA organic regulations include ammonium bicarbonate and ammonium

- 409 carbonate on the National List at 7 CFR 205.605(b)(4) and (5), respectively. The annotation specifies that
- 410 both substances are only for use as a leavening agent. Both ammonium bicarbonate and ammonium
- carbonate were originally included in the first publication of the NOP Final Rule (65 FR 80548, 411
- 412 December 21, 2000). 413

414 International

- 415 Ammonium bicarbonate and ammonium carbonate are allowed by all of the international standards that
- 416 we reviewed (see <u>Table 3</u>, below). Under these standards, organic producers may use ammonium
- 417 bicarbonate and ammonium carbonate as leavening agents. Some standards, such as the Codex
- 418 Alimentarius, also allow ammonium bicarbonate and ammonium carbonate to be used as pH adjusters.
- 419 All of the standards reviewed limited ammonium bicarbonate and ammonium carbonate, only allowing
- 420 them for use in products of plant origin (either explicitly or implicitly, such as by limiting their use as a
- 421 leavening agent only).
- 422

423

10.1
$\Delta 2\Delta$
747

		guille Staria	
Standard	Applicable regulations	Allowed?	Source and use restrictions (if applicable)
Canada Organic Standards (CAN/CGSB-32.310 - Organic Production systems - General principles and management standards; CAN/CGSB 32.311 - Organic Production Systems Permitted Substances List.)	CAN/CGSB 32.311 PSL Table 6.3 – Ingredients classified as food additives	Y	Ammonium bicarbonate: As a leavening agent. Ammonium carbonate: As a leavening agent.
European Economic Community (EEC) Council Regulation (EC No. 834/2007 and EU 2021/1165)	Annex V Part A Section A1 – Food additives, including carriers	Y	E 503, Ammonium carbonates. Organic Foodstuffs to which it may be added: products of plant origin.
Japanese Agricultural Standard (JAS) for Organic Processed Foods	Appended Table 1-1, Additives (Organic processed foods other than organic alcohol beverages) Appended Table 1-2 Additives (Organic alcohol beverages)	Y	INS Number 503i, Ammonium carbonate. Limited to the use in processed products of plant origin. Also allowed as an additive in organic alcohol beverages with no annotation. INS Number 503ii, Ammonium bicarbonate. Limited to the use in processed products of plant origin.
Codex Alimentarius Commission – Guidelines for the Production, Processing, Labelling and Marketing of Organically Produced Foods (GL 32-1999)	Table 3, Ingredients of non- agricultural origin referred to in section 3 of these guidelines. 3.1, Additives permitted for use under specified conditions in certain organic food categories or individual food items.	Y	 INS No. 503i, Ammonium carbonate. Functional use allowed in organic production: Acidity regulator, raising agent. Permitted for use in food of plant origin. Permitted, although exclusions of the GSFA still apply. Not permitted in food of animal origin. INS No. 503ii, Ammonium hydrogen carbonate. Functional use allowed in organic production: Acidity regulator, raising agent. Permitted for use in food of plant origin. Permitted, although exclusions of the GSFA still apply. Not permitted in food of animal origin.
IFOAM-Organics International	Appendix 4 – Table 1: List of approved additives and processing/post-harvest handling aids.	Ŷ	INS 503, Ammonium carbonates (<i>Allowed as an additive</i>). Only for cereal products, confectionery, cakes and biscuits.

Table 3: Allowance of ammonium bicarbonate and ammonium carbonate in processing and handling applications

425		
426		Evaluation Questions for Substances to be used in Organic Handling
427		
428	<u>Classif</u>	ication of the Substance
429		
430	Evalua	tion Question #1(A): Describe if the substance is extracted from naturally occurring plant,
431	animal	, or mineral sources.
432	Comm	ercial ammonium carbonates are not extracted from naturally occurring plant, animal, or mineral
433	sources	б.
434	F 1	
435	Evalua	tion Question #1(B): Describe the most prevalent processes used to manufacture or formulate
430	formul	ation of the substance.
438	The mo	ation of the substance.
439	and car	chamates utilizes ammonia and carbon dioxide as precursors (Ivanchenko et al., 2020; Zapp et al.,
440	1985). /	Ammonium carbonate is not a stable compound and is only formed under precisely defined
441	conditi	ons that are difficult to achieve in any production plant (Zapp et al., 1985). Due to that
442	manufa	acturing limitation, an equivalent mixture of two substances, ammonium carbamate and
443	ammor	nium bicarbonate, is sold as food-grade ammonium carbonate (Zapp et al., 1985). We describe the
444	manufa	acturing process for ammonium bicarbonate, ammonium carbamate, and their precursors below.
445		
446	<u>Carbon</u>	<u>ı dioxide precursor</u>
447	As note	ed in the <i>Carbon Dioxide</i> technical report (NOP, 2023), carbon dioxide is mainly a waste or by-
448	produc	t of the following processes:
449	•	combustion of hydrocarbon fuel and chemical decomposition
450	٠	hydrogen and ammonia production
451	•	fermentation
452	further	using activated carbon hade, and then cooled by water and refrigerants
433	furtiler	using activated carbon beds, and then cooled by water and remgerants.
455	Ammo	nia precursor
456	Comm	ercial ammonia is produced synthetically from atmospheric nitrogen through the Haber-Bosch
457	process	s (Amhamed et al., 2022; MacFarlane et al., 2020; Pattabathula & Richardson, 2016). To produce
458	ammor	nia, gaseous nitrogen and hydrogen are reacted under high pressure in the presence of a metal
459	catalyz	er.
460		
461	The hy	drogen feedstock from which the ammonia is derived through the Haber-Bosch Process is almost
462	entirely	y produced by heating methane through a process called steam methane reforming (MacFarlane et
463	al., 202	0; Pattabathula & Richardson, 2016). This process produces hydrogen and carbon dioxide as by-
464	produc	its.
403	A 11111 0	nium bicarbonata
467	The pr	<u>num occuroonate</u>
468	the foll	owing steps generalized both cases (Ivanchenko et al., 2020; Zapp et al., 1985).
469	1)	Water is saturated with ammonia and carbon dioxide: this reaction generates heat.
470	2)	Cooling systems remove the heat (see <i>Figure 3</i>), prompting the formation of ammonium
471	_,	carbonates crystals.
472	3)	The manufacturers then use centrifuges to separate the crystals from the suspension and dry
473	- /	them; the process ends here for batch production.
474	4)	In continuous production systems, manufacturers recirculate the liquid recovered after
475	/	centrifugation to further saturate it with ammonia and carbon dioxide, which produces more
476		crystals (see <u>Figure 3</u>), which are collected again via centrifugation, and the cycle repeats.

- 5) As described in <u>*Composition of the Substance,*</u> the collected crystals consist of ammonium bicarbonate, ammonium carbonate, and carbamate.
- Throughout these processes, many chemical changes occur (see *saturator detail* diagram in <u>Figure 3</u>)(Sutter
 & Mazzotti, 2017), but <u>Equation 2</u> summarizes the main reaction:

 $\mathbf{NH}_{\mathbf{3}(g)} + \mathbf{CO}_{\mathbf{2}(g)} + \mathbf{H}_{\mathbf{2}}\mathbf{O}_{(aq)} \rightarrow \ + (\mathbf{NH}_{\mathbf{4}})\mathbf{HCO}_{\mathbf{3}(s)} + \ \Delta$

477

478 479

494

external cooler to a saturator, and from the saturator through the sump to the ammonizer unit. As the concentration of the solution increases, saturation occurs, and crystals precipitate (ammonium carbonate, bicarbonate, sesquicarbonates, and carbamate), as shown in the *saturator detail* segment of the figure. The crystals are separated from the suspension through the centrifuge and sent to a warehouse for packaging, and the mother liquor from the collector returns to the saturator via a pump.

495	
496	Ammonium carbonate
497	As stated previously, food-grade ammonium carbonate is actually a mixture of ammonium bicarbonate
498	and ammonium carbamate. See section, Ammonium carbamate, below.
499	
500	Ammonium carbamate
501	Ammonium carbamate is produced industrially by two methods (Dressel et al., 1986; Zapp et al., 1985):
502	
503	• Through the crystallization of a cooled supersaturated aqueous solution:
504	1) Ammonia and carbon dioxide are fed into a concentrated ammonium carbonate solution
505	2) Hydrated carbamate crystals are separated by centrifugation
505	2) The collected crystals are dried carefully under a protective carbon dioxide atmosphere
507	5) The conceled crystals are uncerearly under a protective carbon dioxide atmosphere.
507	Throughout this process, many chemical changes occur in the activated solution (See the saturated detail
500	dia grom in Figure 2), but the cooled temperatures forcer the gradulization of hydroted emmonium
510	and grant in <u>Figure 3</u>), but the cooled temperatures favor the crystallization of hydrated animonium
510	carbamate (Dressel et al., 1986) and, in minor quantities, ammonium bicarbonate, and ammonium
511	carbonate.
512	
513	• Through the interaction of two gasses in a cooled system:
514	1) Gaseous ammonia and carbon dioxide are fed into a heat exchanger.
515	2) They react in the cooled system as described by <u>Equation 3</u> :
516	
517	$\mathbf{2NH}_3 + \mathbf{CO}_2 \rightarrow \mathbf{NH}_2\mathbf{COONH}_4 + \Delta$
518	(ammonium) + (carbon dioxide) \rightarrow (ammonium carbamate) + (heat)
519	Equation 3
520	
521	3) Carbamate condenses within the pipes and is removed later by partial melting.
522	4) This carbamate is sold as carbamate rocks or further processed to obtain a powder.
523	
524	Alternate manufacturing methods for ammonium bicarbonate production
525	Ammonium bicarbonate can be produced through ammonia-based carbon dioxide capture systems,
526	which are a promising technique for reducing carbon dioxide emissions from several industries (Al-
527	Hamed &Dincer, 2021; Siddiqui et al., 2020; Zhuang et al., 2011, 2012). These ammonia-based carbon
528	capture systems have been investigated at the laboratory-scale (Zhuang et al., 201) and re-engineered
529	utilizing the ammonium carbonates production process as the blueprint (Zhuang et al., 2012). However,
530	more development is needed to adopt this technology on an industrial scale (Al-Hamed & Dincer, 2021;
531	Zhuang et al., 2012). Ammonium bicarbonate produced through these systems is not currently available
532	in the market.
533	
534	Manufacturers can produce ammonium bicarbonate, purified by anaerobic digestion of wastewater, at a
535	commercial scale using a system patented by Bion Environmental Technologies Inc (Bassani et al. 2024:
536	Orentlicher & Simon 2018). It is important to note that the ammonium hicarbonate obtained through
537	these systems is marketed only as fortilizer input
538	these systems is marketed only as fertilizer input.
520	Evaluation Quartian $\#1(C)$. Discuss whether the notition of substance is agricultural or non
539 510	agricultural If the substance is non-agricultural is it synthetic or non-agricultural OF II S C (500/01).
540	agricultural. If the substance is non-agricultural, is it synthetic of non-synthetic? [/ U.S.C. 0502(21);
541 542	INOT 5052-1, INOT 5055-2].
542 542	Synthetic or Nonsynthetic Classification
545 511	Synthetic of Nonsynthetic Classification Evoluation of ammonium carbonates accinet Cuidence NOD 5022 1 Decision Two for Classifications of
544 545	Evaluation of antihomum carbonates against Guidance NOP 3055-1 Decision Tree for Clussification of Matanials as Camthotics on Noncomplexities (NOP, 2016a) in discusses d halows
545	ivillerius us synthetic or inonsynthetic (inor, 2010a) is discussed below.
340	

547	<i>1. Is the substance manufactured, produced, or extracted from a natural source?</i>
548	No. Ammonium carbonates are manufactured by reacting synthetic ammonia and carbon dioxide under
549	controlled conditions. Thus, when produced from known commercial methods, these materials are
550	synthetic according to the decision tree.
551	
552	Agricultural or Nonagricultural Classification
553	Evaluation of ammonium carbonates against Guidance NOP 5033-2 Decision Tree for Classification of
554	Agricultural and Nonagricultural Materials for Organic Livestock Production or Handling (NOP, 2016b) is
555	discussed below.
556	
557 558	1. <i>Is the substance a mineral or bacterial culture as included in the definition of nonagricultural substance at section 205.2 of the USDA organic regulations?</i>
559	No. Ammonium carbonates are synthetic substances produced industrially from ammonia and carbon
560	dioxide.
561	
562	2. Is the substance a microorganism (e.g., yeast, bacteria, fungi) or enzyme?
563	No. Ammonium carbonates are synthetic salts.
564	
565	3. Is the substance a crop or livestock product or derived from crops or livestock?
566	No.
567	
568	4. Has the substance been processed to the extent that its chemical structure has been changed?
569	Yes. The substance is produced through chemical means and is a mixture of synthetic salts.
570	
571	5. Is the chemical change a result of naturally occurring biological processes such as fermentation or use of
572	enzymes; or a result of mechanical/physical/biological processes described under section 205.270(a)?
573	No. The chemical change results from the chemical interaction of ammonia and carbon dioxide under
574	controlled cooled conditions.
575	
576	Therefore, when produced from known commercial methods, ammonium carbonates are nonagricultural
577	substances.
578	
579	Evaluation Question #1(D): Does the substance in its raw or formulated forms contain nanoparticles?
580	According to NOP Policy Memo 15-2 Nanotechnology (NOP, 2015), nanotechnology is conducted at the
581	nanoscale, which is about 1 to 100 nanometers (nm). NOP uses the term "incidental nanomaterials" to
582	refer to substances that are byproducts of other manufacturing (e.g., homogenization, milling) or that
583	occur naturally (NOP, 2015).
584	The encoded in the sector contribution (the second of all on the sector of the first of the sector o
585 596	The ammonium carbonates available in the marketplace do not contain intentionally engineered
586	nanomaterials. Ding et al. (2018) conducted microencapsulation experiments with ammonium carbonates,
58/	and encapsulated ammonium carbonate is presumed to exist in the marketplace (ingredients inetwork,
588 580	2020); nowever, these products would likely have diameters between 1 and 1000 micrometers (μ m) and
500	Navatashualasu (NOR 2015) (i.e. 1 to 100 pm)
590	Nunolechnology (NOT, 2015) (i.e., 1 to 100 mm).
502	Nanomatorials that could occur naturally or may be incidental hyproducts of human activity are unlikely
592	to be present in ammonium carbonates because the particle sizes fall in the micrometric scale (from 09
595 50/	500 µm) (Anderson et al. 2014: BASE 2019a, 2019b, 2021: Muchling et al. 1995). Muchling et al. (1995)
595	studied three samples of reagent-grade ammonium carbonate and examined a minimum of 100 particles
596	per sample finding that the particle size of the original sample was 302 + 80 µm (mean + standard
597	deviation) A sample pulverized with a mortar and postle had a particle size distribution of 08 + 36 um
598	while a third sample obtained by using ultrasound to fragment the large crystals had a size distribution
599	of $34 + 10 \text{ µm}$ (Muehling et al., 1995).
600	

601	Evaluation Question #1(E): Does the substance in its raw or formulated forms contain ancillary		
602	substa	nces?	
603	In some cases, ammonium carbonates are mixed with anticaking agents (see <u>Combinations of the Substance</u>)		
604	(BASF, 2019a, 2019b, 2021; Zapp et al., 1985). The identity and percentage of the anti-caking agent are		
605	generally described in the product's technical data sheet. The most common anticaking agent mixed with		
606	ammonium carbonates is magnesium carbonate (0-10,000 parts per million) (BASF, 2019a, 2021);		
607	howev	er, as mentioned in <u>Combinations of the Substance</u> , cornstarch and magnesium oxide may also be	
608	used to	o improve flowability (Zapp et al., 1985).	
609			
610	Evalua	tion Question #1(F): Is the substance created using Excluded Methods?	
611			
612	i.	Techniques found to be "excluded methods" by the NOSB were considered, including Targeted genetic	
613		modification (TagMo), synthetic gene technologies, genome engineering, gene editing, gene targeting, gene	
614		silencing, accelerated plant breeding techniques, synthetic biology, cloned animals and offspring, plastid	
615		transformation, cisgenesis, intragenesis, agro-infiltration, transposons developed using invitro nucleic acid	
616		techniques, induced mutagenesis developed through in vitro nucleic acid techniques, and cell and	
61/	NT I	protoplast fusion (NOP Policy Memo 13-1).	
618	No tec	hnique considered an "excluded method" is used to manufacture ammonium carbonates.	
619		If the substance is many featured from equival trunch were metaviale and these metaviale device of from	
620	11.	If the substance is manufactured from agricultural raw materials, are those materials derived from	
622	Noor	generically engineered crops, or crops resulting from excluded methods:	
622	ino agi	icultural raw materials are used to produce industrial, rood-grade animomum carbonates.	
624	 111	If the substance is manufactured from other biological raw materials – such as those produced by	
625		formentation or enzymatic action – are those biological materials derived from genetically engineered	
626		orognisms or crons orognisms resulting from excluded methods?	
627	No bio	logical raw materials, genetically engineered organisms, or enzymes are used in the manufacturing	
628	of indi	istrial food-grade ammonium carbonate	
629	ormat	istilli, issue grade dimissionalite carbonate.	
630	Evalua	tion Question #2: Specify whether the petitioned substance is categorized as generally	
631	recogn	ized as safe (GRAS) when used according to FDA's good manufacturing practices	
632	7 CFR	205.600(b)(5)]. If not categorized as GRAS, describe the regulatory status.	
633	When	used as a general-purpose food additive, the FDA has categorized ammonium bicarbonate as	
634	GRAS,	per 21 CFR 184.1135 and § 582.1135. Likewise, ammonium carbonate is categorized as GRAS per	
635	§ 184.1	137 and § 582.1137. See section <i>Approved Legal Uses of the Substance</i> above for more details.	
636	-		
637	Purpos	se and Necessity of the Substance	
638			
639	Evalua	tion Question #3: Describe whether the primary technical function or purpose of the petitioned	
640	substa	nce is a preservative [7 CFR 205.600(b)(4)].	
641	Accore	ling to the FDA definition at 21 CFR 101.22(a)(5), ammonium carbonates are not chemical	
642	preserv	vatives as they do not prevent the deterioration of food. Instead, they are the source of a	
643	decom	position reaction induced by heat that results in ammonia and carbon dioxide gas release. The gas	
644	provid	es a physical rise when added to baked goods and does not affect the pH of the final product	
645	(Gélina	as, 2022; van der Sman, 2021).	
646			
647	Bejosar	no and Waniska (2004) found that compared to sodium bicarbonate, ammonium bicarbonate	
648	improv	ved shelf life in wheat tortillas; however, the study focused on comparing the two materials as	
649	leaven	ing agents rather than as preservatives.	
650			
651	Evalua	tion Question #4: Describe whether the petitioned substance will be used primarily to recreate	
652	or imp	rove flavors, colors, textures, or nutritive values lost in processing (except when required by	
653	law). I	f so, how? [7 CFR 205.600(b)(4)].	
654	Ammo	nium carbonates are not used to recreate flavors, colors, textures, or nutritive values lost during	

655 processing. However, ammonium carbonates are used to assist in improving the texture of specific baked

products. According to Kollemparembil et al. (2023), the use of leavening agents is crucial to creating a
softer, more edible baked good. The structural development of baked goods takes place in the leavening
and baking steps (Canali et al., 2020), where ammonium carbonates reduce density by opening textural
pores in the baked good's structure.

- 661 Canali et al. (2020) tested the density of several cookies that contained varying amounts of leavening 662 agent. They compared baking powder mixtures including:
 - ammonium bicarbonate
 - sodium bicarbonate combined with potassium tartrate and cornstarch
 - sodium bicarbonate combined with diphosphates and cornstarch
- 665 666

663 664

- Next, they measured the adsorption potential, weighing the cookie before and after soaking it in milk.³
 The results showed that the ammonium bicarbonate cookie provided the highest degree of leavening and
 adsorbed 115% of its initial weight. This was correlated with low hardness, a large diameter and
- thickness, and low weight. A more homogenous pore size was also attributed to the use of ammoniumbicarbonate.
- 672
- 673 Reports regarding the use of ammonium bicarbonate as a flavoring agent are varied. Huber and
- 674 Schoenlechner (2017) and Kollemparembil (2023) report a strong characteristic flavor, the latter reporting
- that black and white cookies' distinctive flavor, for example, is due to the use of ammonium bicarbonate.
- 676 However, Sadd (2008) and Howard (2019) report that ammonium carbonates do not leave any flavor or
- odor behind after the baking process is finished. All sources indicate that ammonium carbonates
- 678 decompose entirely and do not remain in the final baked products.
- 679

Ammonium carbonates are not associated with the color development of baked products (Kweon et al.,

- 2014); however, as a result of its instability, baked goods may develop a dark color if the ammonium
- 682 carbonates are not first dissolved in water and well-distributed throughout the mixture (Gélinas, 2022).
- 683 Ammonium carbonates' instability results in early decomposition and subsequent oxidation. We discuss
- 684 ammonium carbonates' instability further in *Evaluation Question #1B* and *Properties of the Substance*.
- 685

Evaluation Question #5: Describe any effect or potential effect on the nutritional quality of the food or feed when the petitioned substance is used [7 CFR 205.600(b)(3)].

- 688 Ammonium carbonates do not directly contribute to the nutritional quality of food when used as
- leavening agents because they do not remain in the final food product. Instead, they have indirect
- 690 nutritional effects as a result of their decomposition.
- 691

692 Sodium intake reduction

- Ammonium carbonates decompose completely with heat (Miller, 2016). A unique aspect of these
- materials is that their mode of action does not contribute to increased sodium content, which is often the
- case with other chemical leavening agents such as baking soda and baking powder (Miller, 2016; World
- 696 Health Organization & Food and Agriculture Organization of the United Nations, 2009). Unlike other
- 697 common leavening agents, ammonium carbonates do not need an acid activator to complete their gas
- 698 release, therefore salt residues are not created. When used as leavening agents, ammonium carbonates are
- 699 functional from the viewpoint of overall sodium intake reduction (van der Sman, 2021).
- 700

Evaluation Question #6: List any reported residues of heavy metals or other contaminants in excess of FDA tolerances that are present or have been reported in the petitioned substance

703 [7 CFR 205.600(b)(5)].

- 704 The FDA establishes "action levels" for poisonous or deleterious substances that are unavoidable in
- human food and animal feed (U.S. FDA, 2000). These include aflatoxin, cadmium, lead, polychlorinated
- biphenyls (PCBs), and many other substances. The FDA uses different action level tolerances for these
- substances, depending on the commodity. Commodities are largely food items; however, the FDA also
- includes tolerances for ceramic and metal items, such as eating vessels and utensils. Ammonium

³ Adsorb: attract to the surface of the material, in this case the cookie, by physical attraction.

- 709 bicarbonate, ammonium carbonate, and ammonium carbamate are not included on the list of
- 710 commodities with action levels (U.S. FDA, 2000).
- 711 712 The Food Chemicals Codex specifies limits on impurities in ammonium bicarbonate to 3 ppm of lead
- 713 (U.S. Pharmacopeia, 2024). The Food Chemicals Codex does not provide specific limit values for other
- 714 heavy metals or contaminants in ammonium bicarbonate. Other inorganic impurities that may occur in
- 715 ammonium bicarbonate are (U.S. Pharmacopeia, 2024): 716
 - chloride, no more than 30 ppm when evaluated by a turbidity test
 - sulfate, no more than 70 ppm when evaluated by a turbidity test
- 718 nonvolatile residues, no more than 0.05% or 0.55% for products containing a suitable anticaking • 719 agent
- 720

721 Researchers attribute heavy metal contamination in baked goods to fertilizers and pesticides used in wheat cultivation (Mocanu et al., 2023). Acrylamide is the most concerning substance, as ammonium 722 carbonates are noted to be one of the major contributors to acrylamide formation (Pasqualone et al., 2021).

723 724

725 Evaluation Question #7: Discuss and summarize findings on whether the manufacture and use of the 726 petitioned substance may be harmful to the environment or biodiversity [7 U.S.C. 6517(c)(1)(A)(i) and 727 7 U.S.C. 6517(c)(2)(A)(i)].

728

As a leavening agent in the food industry 729

730 Ammonium carbonates are unlikely to harm the environment or biodiversity at the concentrations used

731 in the baking industries. As described in Action of the Substance, when ammonium carbonates are used

732 correctly as a leavening agent in baking, they fully decompose into gaseous carbon dioxide, ammonia,

- 733 and water and, therefore, are not present in the final product.
- 734

735 Ammonia and carbon dioxide emissions can be harmful to the environment; however, the amounts 736 emitted during the baking process can be considered harmless. For instance, when baking a batch of one 737 kilogram of product containing the maximum allowable percentage of ammonium carbonates (3.2% per FDA regulations) (ATSDR, 2004b), approximately 5.6 grams of ammonia gas would be produced. This 738 amount of ammonia gas would translate into about 40 parts per million (ppm) of ammonia gas inside a 739 standard oven space (five cubic feet). Upon opening the oven, ammonia odor might be detected, but the 740 741 carbon dioxide and ammonia gases would quickly dissipate (National Research Council, 2008). In a 742 standard kitchen with a space of about 195 square feet and a height of 8 feet, the concentration of 743 ammonia gas would remain at approximately 0.127 ppm in the room if it is closed and not ventilated. 744 This concentration is harmless and undetectable by humans, as the odor of ammonia can only be detected 745 at concentrations higher than 5 ppm (National Research Council, 2008). Additionally, mild irritation from 746 ammonia gas does not occur until the concentration reaches 30 ppm and the exposure lasts for 10 minutes 747 (National Research Council, 2008); assuming that the baking space is well-ventilated, such exposure is 748 unlikely. In this same scenario, the concentration of carbon dioxide dispersed in the standard kitchen 749 coming exclusively from the ammonium carbonates used would be about 0.33 ppm. This concentration is 750 far below the typical carbon dioxide levels found in outdoor spaces (300-900 ppm) (FSIS, 2024). 751 752 The Food Safety and Inspection Services (2024) indicate that only values of carbon dioxide as high as 753 40,000 ppm are considered an immediate danger, this is further discussed in *Evaluation question #8*. 754 755 When compared to the emissions of ammonia produced by other industries, such as the fertilizer 756 industry and the animal production sector, the emissions from the baking industry are negligible. For

- example, in the United States, the annual ammonia emissions from livestock production are about 757
- 758 19 kilograms (kg) for dairy, 7.6 kg for swine, and 0.18 kg for poultry per animal (Arogo et al., 2001). In
- 759 addition, the concentration of ammonia in such emissions can be as high as 18.2 ppm (swine barns) and
- 760 29.2 ppm (poultry houses) (Arogo et al., 2001). Rotz (2023) states that beef cattle production in the United
- States emits approximately 900 million kg of ammonia per year, which accounts for roughly 30% of the 761
- total annual ammonia emissions in the United States. In terms of carbon dioxide equivalents, the 762
- 763 emissions from beef cattle in the United States amount to about 243 billion kg per year (Rotz et al., 2019).

764	
765	Breakdown products in soil, water, and air
766	Ammonium carbonates are highly volatile compounds; in soil, they disassociate into ammonia and
767	carbon dioxide at temperatures as low as 20°C (Behera et al., 2013; Zapp et al., 1985). In moist
768	environments, ammonium carbonates are unstable and produce ammonium ions which can then
769	volatilize as ammonia (Brondi et al., 2023). Depending on the conditions, ammonium in soils can be taken
770	up by plants (Brondi et al., 2023). Ammonium ions can also transform into a range of other compounds,
771	including nitric oxide, nitrous oxide, and molecular nitrogen, first by microbes through nitrification, and
772	then through denitrification (Brondi et al., 2023; The Royal Society, 2020). Excessive ammonia in soil can
773	impact species composition through (Guthrie et al., 2018; The Royal Society, 2020):
774	soil acidification
775	toxic damage to leaves
776	• susceptibility of plants to frost, drought, and pathogens (including insect pests and invasive
777	species)
778	
779	Some species and habitats that are particularly susceptible to ammonia pollution and excessive nitrogen
780	include (Guthrie et al., 2018):
781	bog and peatland habitats
782	• grasslands
783	heathlands
784	• forests
785	
786	Ammonia can damage lichens and mosses even at low concentrations (Guthrie et al., 2018).
787	
788	Sheppard et al. (2011) conducted a comprehensive nine-year field experiment to evaluate the impact of
789	various nitrogen forms on vegetation. They found that ammonia levels ranging from 20 to 56 kg NH ₃ -N
790	ha ⁻¹ yr ⁻¹ correlated with a significant decline in the populations of <i>Sphagnum capillifolium</i> moss and
791	Cladonia portentosa lichen within three years. Such ammonia deposition levels are commonly observed in
792	rural areas with intensive and extensive livestock production (Tang et al., 2009). In another study,
793	Deshpande et al. (2024) quantified ammonia deposition in forest ecosystems in Scotland (12 to 162 kg
794	NH3-N ha-1yr-1) and Sri Lanka, reporting estimates ranging from in Scotland and in Sri Lanka (16 to 426
795	kg NH ₃ -N ha ⁻¹ yr ⁻¹). Research by Herk (2003) indicated that nitrogen concentrations as low as 0.3 mg N
796	per liter in precipitation can adversely affect the occurrence of certain lichen species, including Bryoria
797	capillaris, B. fuscescens, Imshaugia aleurites, and Chaenotheca ferruginea.
798	
799	Guthrie (2018) also mentions that nitrogen pollution has a negative correlation with the presence of
800	pollinators such as bees and butterflies.
801	
802	Excess ammonia from fertilizer application can leach into the soil, air, and water (The Royal Society,
803	2020). Ammonium in the water leads to eutrophication and to various issues that stem from nitrogen
804	overload, such as (Fields, 2004; Guthrie et al., 2018; Han et al., 2020): ⁴
805	toxic algal blooms
806	oxygen depletion
807	• fish kills
808	 poor drinking water quality
809	
810	Aquatic animals are especially susceptible to the toxic effects of ammonia because they have thin,
811	permeable skin surfaces (Guthrie et al., 2018); even very low concentrations of ammonia (0.6 ppm, over a
812	tew days) can cause tish mortality (Buss et al., 2004; Durborow et al., 1997). Ammonium can lead to
813	nitrate tormation in drinking water, causing an unpalatable taste and odor (Buss et al., 2004). In the
814	human body, nitrates are converted into nitrite, which can cause methemoglobinemia by interfering with
815	the ability of hemoglobin to take up oxygen (Galloway et al., 2003). Drinking water with elevated

⁴ Eutrophication: An increase in the rate of supply of organic matter to an ecosystem (Nixon, 1995).

- 816 concentrations of nitrate can also cause respiratory infections, alteration of thyroid metabolism, and
- 817 cancer (Galloway et al., 2003).
- 818
- 819 Volatilized ammonia is a strong base and corrosive pollutant, and it affects human health and life
- expectancy (Van Damme et al., 2018). At concentrations as low as 50-100 ppm, it can cause severe burning
 of the eyes, skin, and respiratory system (Han et al., 2020). Other air quality issues caused by ammonia
- 822 include (The Royal Society, 2020):
 - increased particulate matter
 - greenhouse gas emissions
 - stratospheric ozone loss
- 825 826

824

In summary, excessive ammonium carbonates released into the environment could lead to emissions of
ammonia and the production of ammonium, potentially contributing to the acidification and
eutrophication of ecosystems, widespread biodiversity loss, and climate change (Guthrie et al., 2018; The
Royal Society, 2020; Van Damme et al., 2018). However, ammonium carbonates are used in minute
amounts in the food processing industry, therefore, significant environmental impacts are not expected to
occur within this context.

- 833
- 834 <u>Manufacturing process</u>
- 835 The production of industrial ammonia (the main precursor of ammonium carbonates) is a highly
- 836 polluting process. Current global ammonia production is about 176 million tons per year (The Royal
- 837 Society, 2020), with about 6% used to produce ammonium <u>bicarbonate</u> (Amhamed et al., 2022). Other
- sources suggest that only about 7,000 tons of food-grade ammonium <u>carbonate</u> are produced worldwide
- every year (The Chemical Company, 2024); however, we were not able to independently verify this latterquantity.
- 840 841

842 The ammonia industry is currently responsible for consuming about 2% of the world's total fossil fuel,

- accounts for 2% of the global greenhouse gas emissions, and is considered one of the largest carbon
- dioxide-emitting chemical industry processes worldwide (The Royal Society, 2020). According to
- 845 researchers, environmental experts, and policy authorities, ammonia manufacturers need to find a more
- sustainable production method to meet the recent climate goal set by the United Nations in its net-zero
- climate action plan (Mayer et al., 2023; The Royal Society, 2020).
- 848

849 In contrast, we did not find studies indicating that the manufacturing of ammonium carbonates is

- 850 detrimental to the environment. Ammonia/carbon dioxide-capturing systems follow a similar scheme as
- ammonium carbonates manufacturing processes and researchers propose that they are a potential
- solution for reducing greenhouse gas emissions in the industry (Wang et al., 2007; Zhuang et al., 2011,
- 853 2012).
- 854
 855 Evaluation Question #8: Describe and summarize any reported effects upon human health from use of
 856 the petitioned substance [7 U.S.C. 6517(c)(1)(A)(i), 7 U.S.C. 6517(c)(2)(A)(i), and 7 U.S.C. 6518(m)(4)].
- 857 We did not find reports of negative effects directly caused by ammonium carbonates when used as
- leavening agents nor explicit safety considerations that need to be taken when using them as leavening
- agents. As described in <u>Action of the Substance</u>, if used properly at the recommended concentration,
- ammonium carbonates will fully decompose into ammonia, carbon dioxide, and water during the baking
- process. The FDA states that the levels of ammonia and ammonium compounds normally found in food do not pose a health risk (ATSDR, 2004a). In cases where ammonium carbonate is misused (*i.e.*, overused
- do not pose a health risk (ATSDR, 2004a). In cases where ammonium carbonate is misused (*i.e.*, overused or used on baked products that contain more than 5% moisture), it might remain in the baked good and
- 864 its presence would make the product unpalatable due to the ammoniacal flavor or odor (Huang &
- 865 Miskelly, 2016; Vetter, 2003). When consumed in small quantities, the ammonia ion of ammonium
- carbonates would be metabolized by the body and disposed of primarily by the hepatic formation of urea
- 867 (Mohiuddin & Khattar, 2024).
- 868

869 Breakdown products

870 Ammonium carbonates can degrade at temperatures above 60°C, producing carbon dioxide and

871 ammonia fumes. The amount of carbon dioxide in these fumes is not harmful since their concentration 872 would be far below the values considered dangerous (above 40,000 ppm) (FSIS, 2024). The symptoms

- associated with various levels of carbon dioxide exposure are as follows (FSIS, 2024): 873
- 874 5,000 ppm (for 8 hours of exposure): headache, dizziness, and nausea. 10,000 ppm (short-term exposure): possible drowsiness. 875 • 876 15,000 ppm (short-term exposure): mild respiratory stimulation in some individuals. • 877 • 30,000 ppm (short-term exposure): moderate respiratory stimulation, increased heart rate, and elevated blood pressure. 878 40,000 ppm (short-term exposure): immediate danger to life or health. 879 • 880 50,000 ppm (short-term exposure): strong respiratory stimulation, dizziness, confusion, headache, • and shortness of breath. 881 882 • 80,000 ppm (short-term exposure): dimmed vision, sweating, tremors, unconsciousness, and 883 potential death due to asphyxiation. 884 885 Ammonia has a very strong, irritating odor that is detectable through smell at levels higher than 5 ppm (ATSDR, 2004a). Therefore, the smell would be detected before being exposed to harmful concentrations. 886
- Short exposure to ammonia fumes may cause (ATSDR, 2004a): 887
- 888 • eve, nose, throat and lung irritation
- 889 • cough
- difficulty breathing 890 •
- 891

Volunteers exposed to different concentrations of ammonia for a set period presented the following 892 893 effects (National Research Council, 2008):

- Slight irritation at 30 ppm for 10 minutes 894 •
- 895 • Moderate irritation to the eyes, nose, throat, and chest at 50 ppm for 10 minutes to 2 hours
- Moderate to highly intense irritation at 80 ppm for 30 minutes to 2 hours 896 •
- 897 • Highly intense irritation at 110 ppm for 30 minutes to 2 hours
- 898 Unbearable irritation at 140 ppm for 30 minutes to 2 hours •
- 899 Immediate tearing and irritation at 500 ppm •
- Reflex glottis closure (a protective response to inhaling irritant vapors) occurred around 570 ppm 900

for 21- to 30-year-old subjects, 1,000 ppm for 60-year-old subjects, and 1,790 ppm for 86- to 90-901 vear-old subjects 902

- The accidental exposure of a man to 10,000 ppm of ammonia vapor for 3 hours (National Research 903 904 Council, 2008) caused him a fatal cardiac arrest 6 hours after the exposure. The autopsy revealed severe
- 905 damage to the whole respiratory system.
- 906

907 Ammonium carbonates are used in smelling salts because the ammonia gas irritates the membranes of 908 the nose and lungs, thereby triggering an inhalation reflex (McCrory, 2006). This reflex alters the pattern 909 of breathing, resulting in improved respiratory flow rates and increased alertness (McCrory, 2006).

- 910
- 911 In summary, ammoniacal agents can be toxic when ingested in large doses or inhaled in high

912 concentrations for prolonged periods (McCrory, 2006), but this is unlikely when ammonium carbonates 913 are used for baking.

914

Acrylamide formation in baked goods 915

- 916 Ammonium carbonates promote the creation of acrylamide (a probable human carcinogen) in baked
- goods (Komprda et al., 2017; Pasqualone et al., 2021). Acrylamide produced in the presence of 917
- ammonium carbonate is more than six times the amount produced in the presence of other leavening 918
- 919 agents, and is generally associated as a part of the Maillard reaction that occurs in the baking process

- 920 (Kukurová & Ciesarová, 2024; Pasqualone et al., 2021).⁵ Specifically, acrylamide forms by the reaction of 921 the amino acid asparagine with a reducing sugar (e.g., glucose and fructose) at temperatures above 120°C 922 and at low moisture levels (World Health Organization & Food and Agriculture Organization of the 923 United Nations, 2009). Ammonium carbonates serve as the source of the base intermediate required for 924 this reaction (Komprda et al., 2017). 925 926 Though the FDA has not established a maximum recommended level or action level, the current 927 guidance is to reduce acrylamide levels as much as possible (Center for Food Safety and Applied 928 Nutrition, 2024). 929 930 Alternatives 931 932 Evaluation Question #9: Are there alternative natural (nonsynthetic) source(s) of the substance? 933 [7 CFR 205.600(b)(1)]. 934 We were not able to find nonsynthetic alternatives for ammonium carbonates. Teschemacherite, the only 935 known natural ammonium bicarbonate (Fortes et al., 2014; Hazen et al., 2016), is a scarce mineral (Mindat, 936 2024), and therefore not a viable source to satisfy the commercial demand. 937 938 Novel technologies to produce industrial amounts of ammonium carbonates through anaerobic digestion 939 exist (Bassani et al., 2024; Orentlicher & Simon, 2018); however, these techniques utilize cow manure 940 wastewater as a feedstock. Therefore, it is unlikely that the final ammonium carbonates are food-grade. In addition, ammonium carbonates resulting from these novel processes are currently only marketed as 941 fertilizers, and it is unclear whether they would be considered nonsynthetic or synthetic using Guidance 942 943 NOP 5033-1 Decision Tree for Classification of Materials as Synthetic or Nonsynthetic (NOP, 2016a). 944 945 Evaluation Ouestion #10: Describe all nonagricultural non-synthetic substances or products which 946 may be used in place of the petitioned substance [7 U.S.C. 6517(c)(1)(A)(ii)]. Additionally, identify 947 which of those are currently allowed under the NOP regulations. 948 Various authors discuss many alternatives to ammonium carbonates, each with their own advantages
- 949 and drawbacks. Table 4 shows each alternative with a comparison to ammonium carbonates. Although
- 950 these alternatives may replace ammonium carbonates under certain contexts, leavening agents are chosen
- 951 for their specific qualities, aiming to produce a specific baked good taste, rheology, texture, color, and 952
- aromatic profile (Canali et al., 2020). When launching a product into the market, leavening agents are 953 evaluated for their influence on the quality and sensory characteristics of the product (Rodriguez
- 954 Sandoval et al., 2020). Some recipes do not allow for a direct leavening agent replacement (Canali et al.,
- 955 2020).

Table 4: Leavening agent comparison (Canali et al., 2020; De Leyn, 2014; Miller, 2016)

		, ,	, ,	, , ,
Material	Leavening acid needed	Taste contribution	Residue	National List allowance
Ammonium carbonates	No	No	No	205.605(b)(4) and (5)
Sodium bicarbonate	Yes	No*	Yes	205.605(a)(26) and (27)
Potassium bicarbonate	Yes	Yes	Yes	No handling allowance
Yeast	No	Yes	Yes	205.605(a)(30)
*Sodium bicarbonat	e does not contribute to taste	in low amounts. Higher	amounts ma	y cause a bitter taste.

958

- 959
- 960 Commercial leaveners can be classified as either chemical leaveners or yeasts. Chemical leavening agents
- 961 are sold in powdered form and work by releasing carbon dioxide as they decompose (De Leyn, 2014).
- 962 These materials can be further classified as leavening acids or leavening bases (Miller, 2016).
- 963 Commercially, leavening acids and bases are combined, mixed with a diluent (e.g., cornstarch), and sold

⁵ The Maillard reaction is a multi-step reaction between reducing sugars and amino compounds. The process involves a series of condensations, compound isomerization (rearrangement of atoms in a compound), amidation (addition of a -NH₂ group), oxidations, and polymerization.

as "baking powder" (Canali et al., 2020; Miller, 2016; Rodriguez Sandoval et al., 2020).⁶ Though most 964

- 965 acids could be used in this process, manufacturers generally use a small group of cheap, stable acids (e.g., sodium acid pyrophosphate, monocalcium phosphate, glucono delta-lactone) (De Leyn, 2014). Most of 966
- 967 these acids are synthetic. Baking powders are available as single-acting or double-acting (Rodriguez
- Sandoval et al., 2020). Single-acting baking powders contain one acid, either a fast-acting acid that reacts 968
- 969 in the mixer, or a slow-acting acid that reacts in the oven. Double-acting baking powders contain both
- 970 fast-acting and slow-acting acids.

972 Sodium bicarbonate

973 Sodium bicarbonate is a leavening base that decomposes when exposed to heat, releasing carbon dioxide 974 gas, water, and sodium carbonate (De Leyn, 2014; Miller, 2016). While in the oven, sodium bicarbonate

975 loses about half of its weight in the form of carbon dioxide (Gélinas, 2022). In the presence of an acid, the

976 remaining sodium carbonate further decomposes to produce additional carbon dioxide (De Leyn, 2014).

977 Because of the potential for unreacted residue, sodium bicarbonate is not commonly used alone, but in

- 978 combination with at least one leavening acid. Leavening acids are discussed in section *Leavening acids* 979 below.
- 980

971

981 No more than approximately 25% of sodium carbonate and bicarbonate dissolve into the final baked

- 982 good. This residue causes an increase in pH, leading to more intensive browning and an increase in
- 983 alkaline taste, known as "soda bite" (Canali et al., 2020; Huber & Schoenlechner, 2017). Strong tastes, such 984 as ginger, may mask an excess amount of sodium bicarbonate (Gélinas, 2022).
- 985

986 In order to decompose the sodium bicarbonate completely, manufacturers may increase the moisture

- 987 levels and carefully choose the leavening acid (De Leyn, 2014). These two environmental changes adjust
- 988 the rate of reaction and, therefore, the residue. In high-moisture products, sodium salt is produced at the 989 end decomposition instead of sodium carbonate (De Leyn, 2014).
- 990

991 Sodium bicarbonate is the most popular gas-releasing material after baker's yeast because of its low cost,

- 992 ease of handling, low toxicity, high purity, and lack of taste contribution when used in low amounts
- 993 (Gélinas, 2022). Performance information is generally dependent on the exact recipe used, as interactions
- 994 between sugar, fat, and moisture may alter the rising effect in leavening agents. In lower-moisture baked
- 995 goods where ammonium bicarbonate is primarily used, sodium bicarbonate causes dark spots (Gélinas,
- 996 2022) This is due to the incomplete dissolution of sodium bicarbonate. Ultrafine sodium bicarbonate
- 997 (particle size = 1 μ m) is more efficiently distributed throughout the low-moisture dough than the
- 998 traditional, courser sodium bicarbonate (particle size = 70–90 μm) (Gélinas, 2022). 999

Potassium bicarbonate 1000

1001 Potassium bicarbonate is a leavening base that slowly decomposes when exposed to heat, releasing

- 1002 carbon dioxide (De Leyn, 2014). It requires an acid and a long baking process to completely decompose. If
- 1003 it is not decomposed completely, the final baked good is discolored and has a bitter taste. The use of this leavening agent is associated with a fine crumb structure and it is often used when the amount of sodium 1004
- 1005 in the product must be reduced (De Leyn, 2014).
- 1006
- 1007 Yeast
- 1008 Yeast is commonly used in higher moisture, bread-type baked goods (Miller, 2016; van der Sman, 2021).
- 1009 Ammonium bicarbonate is limited to applications under five percent moisture. Although yeast is the
- 1010 most popular leavening agent, it is typically not a suitable substitute for ammonium bicarbonate because
- 1011 the two materials are generally used in different contexts. Yeast is available as a certified organic product 1012
- and is also allowed for use in organic handling/processing as it is on the National List at
- 1013 7 CFR 205.605(a)(30) as a nonagricultural (nonorganic) nonsynthetic substance. 1014

⁶ The most common leavening base used is sodium bicarbonate. Multiple sources define "baking powder" as a mixture of sodium bicarbonate, one or more leavening acids, and a diluent. However, this term can be commercially found applied to a variety of mixtures that do not include sodium bicarbonate.

1015 *Leavening acids*

- 1016 Leavening acids are used in conjunction with leavening bases. The materials listed below are
- 1017 commercially available, nonsynthetic options.
- 1018

1019 *Cream of tartar, potassium bitartrate*

1020 Potassium bitartrate, or cream of tartar, is a leavening acid and an agricultural byproduct of grape

1021 production (Canali et al., 2020; De Leyn, 2014). It is allowed for use in organic handling/processing as it

- 1022 is on the National List at § 205.606(p) (as "potassium acid tartrate") as a nonorganic agricultural
- 1023 substance that can be used in organic products when organic versions are not commercially available.
- 1024 Though the product is agricultural, we did not find evidence of a certified organic product available on
- 1025 the market. 1026
- 1027 Tartaric acid

1028Tartaric acid reacts immediately with sodium bicarbonate (De Leyn, 2014). Sodium tartrate, associated1029with laxative action, is formed as a residual salt. While no problems are reported with small amounts of

- 1030 residual salt, this is not a preferred acid. Tartaric acid (specifically, tartaric acid made from grape wine) is
- allowed for use in organic handling/processing as it is on the National List at § 205.605(a)(28) as a
- 1032 nonagricultural (nonorganic) nonsynthetic substance.
- 1033
- 1034 *Citric and lactic acid*

1035 Citric and lactic acid are two leavening acids used in baking powders. Lactic acid is fast-acting and reacts

as early as the mixing stage (De Leyn, 2014). Although lactic acid (along with <u>Cream of tartar, potassium</u>
 bitartrate) is one of the original acidulants, its quick reaction time has been almost completely replaced by

newer compounds. Lactic acid was included as a leavening acid by adding soured milk to the mixture.

1039

1040 According to van der Sman (2021), citric acid can also be used as a fast reactor in sodium bicarbonate

1041 baking powders; however, this use may be limited to bread doughs that have a higher moisture content

1042 rather than those that would be suitable for ammonium bicarbonate use. Both citric acid (produced by

- 1043 microbial fermentation of carbohydrate substances) and lactic acid are allowed for use in organic
- 1044 handling/processing as they are on the National List at § 205.605(a)(1) as nonagricultural (nonorganic)
- 1045 nonsynthetic substances.
- 1046
- 1047 *Glucono delta-lactone*

1048 Glucono delta-lactone is a slow-releasing leavening acid that continuously produces carbon dioxide (De

- 1049 Leyn, 2014). Glucono delta-lactone has a sweet taste initially, a slightly acidic aftertaste, and is derived
- 1050 from gluconic acid. Glucono delta-lactone is allowed for use in organic handling/processing as it is on
- 1051 the National List at § 205.605(a)(14). However, glucono delta-lactone produced by the oxidation of D-
- 1052 glucose with bromine water is prohibited in organic handling/processing.
- 1053

Evaluation Question #11: Provide a list of organic agricultural products that could be alternatives for the petitioned substance [7 CFR 205.600(b)(1)].

- 1056 We did not find evidence that organic agricultural products are being used as alternatives to ammonium
- 1057 carbonates. Most leavening agents are nonagricultural, inorganic salts (De Leyn, 2014). Yeast, which is
- 1058 available as a certified organic agricultural product (see section <u>Yeast</u>, in <u>Evaluation Question #10</u>), may be
- 1059 an alternative in very specific situations. Alternative leavening agents and their properties are described
- 1060 in *Evaluation Question #10*.
- 1061

Evaluation Question #12: Describe if there are any alternative practices that would make the use of the petitioned substance unnecessary [7 U.S.C. 6518(m)(6)].

1064 The use of yeast could be considered an alternative practice; however, yeast is typically not a suitable

- 1065 substitute for ammonium carbonates because the two leavening agents are used to produce baked goods
- 1066 of different humidities and textures as described in *Evaluation Question #10*. In addition, the use of yeast
- 1067 alters the taste of the baked good and adds a distinct flavor profile (Birch et al., 2013), which is not
- 1068 desired in all products.
- 1069

1070 1071 1072 1073 1074 1075 1076 1077	The only alternative practice we found that could potentially replace ammonium carbonates successfully in the future (in terms of leaving no residue, not altering the taste, the pH, and improving texture) is the use of carbon dioxide gas hydrates. Gas hydrates are formed when water and low molecular weight gases (like carbon dioxide) are subjected to low temperature and high-pressure conditions; the majority of molecules in a gas hydrate are hydrogen-bonded water molecules that create cages and contain the gas molecules in ice-like structures (Frühling et al., 2023; Srivastava et al., 2022). Stability and baking tests showed that carbon dioxide hydrates are, in principle, suitable as a leavening
1078 1079 1080 1081 1082 1083 1084	agent (Frühling et al., 2023). In addition, their use would not increase the acrylamide content of baked goods to the level that ammonium carbonates do (Kollemparembil et al., 2023). Carbon dioxide gas hydrates have been used to produce bread (Frühling et al., 2023; Srivastava et al., 2022) and black and white cookies (Kollemparembil et al., 2023). These studies concluded that, although promising, the use of carbon dioxide gas hydrate production still needs to be optimized, and recipes for their application require further development (Frühling et al., 2023).
1085 1086 1087	This technology is not commercially available yet, and further research is required for it to improve (Srivastava et al., 2022).
1088	Report Authorship
1089 1090	The following individuals were involved in research, data collection, writing, editing, and/or final approval of this report:
1091	 Peter O. Bungum, Research and Education Manager, OMRI
1092	Aura del Angel A Larson, Bilingual Technical Research Analyst, OMRI
1093	 Jacky Castañeda, Bilingual Technical Research Analyst, OMRI
1094	Jarod T Rhoades, Standards Manager, OMRI
1095	Doug Currier, Technical Director, OMRI
1096	Ashley Shaw, Technical Research and Administrative Specialist, OMRI
1097	
1098 1099 1100	All individuals are in compliance with Federal Acquisition Regulations (FAR) Subpart 3.11 – Preventing Personal Conflicts of Interest for Contractor Employees Performing Acquisition Functions.
1101	References
1102 1103 1104	Al-Hamed, K. H. M., & Dincer, I. (2021). A comparative review of potential ammonia-based carbon capture systems. <i>Journal of Environmental Management</i> , 287, 112357. <u>https://doi.org/10.1016/j.jenvman.2021.112357</u>
1104 1105 1106 1107	Amhamed, A. I., Shuibul Qarnain, S., Hewlett, S., Sodiq, A., Abdellatif, Y., Isaifan, R. J., & Alrebei, O. F. (2022). Ammonia Production Plants – A Review. <i>Fuels</i> , 3(3), Article 3. <u>https://doi.org/10.3390/fuels3030026</u>
1108 1109 1110 1111	Anderson, C. M., Denise, P. K., Cunha, A. R., Ribeiro, A. A., De Oliveira, M. V., & Fernandes, C. P. (2014). Quantitative Analysis of Titanium Samples by Means of the Pore-Throat Network Code Application. <i>Materials Science Forum</i> , 802, 501–506. <u>https://doi.org/10.4028/www.scientific.net/MSF.802.501</u>
1112 1113 1114	Arogo, J., Westerman, P. W., Heber, A. J., Robarge, W. P., & Classen, J. J. (2001). <i>Ammonia in Animal Production – A Review</i> . <u>https://doi.org/10.13031/2013.4136</u>
1115 1116 1117	ATSDR. (2004a). <i>ATSDR- Toxic Substances Portal – Ammonia</i> . https://wwwn.cdc.gov/TSP/PHS/PHS.aspx?phsid=9&toxid=2
1118 1119 1120 1121	ATSDR. (2004b). Toxicological Profile for Ammonia. In Atlanta (GA): Agency for Toxic Substances and Disease Registry (US). Agency for Toxic Substances and Disease Registry (US). <u>https://www.ncbi.nlm.nih.gov/books/NBK598726/</u>
1122 1123	BASF. (2019a). Product Specification: Ammonium bicarbonate n Food Grade.
1124	BASF. (2019b). Product Specification: Ammonium Carbonate Food Grade (E 503i).

1125	
1126	BASF. (2021). Product Specification: Ammonium Bicarbonate SH Food Grade.
1127	
1128	BASF. (2024). BASF, Inorganics for food. BASF Inorganics. https://inorganics.basf.com/markets/food-feed-
1129	pharma/food-industry
1130	
1131	Bassani, D., Orentlicher, M., Simon, M. M., & Pagano, S. (2024). Process to recover ammonium bicarbonate from wastewater
1132	(United States Patent US11858823B2).
1133	https://patents.google.com/patent/US11858823B2/en/assignee=Bion+Environmental+Technologies+Inc&
1134	oq=Bion+Environmental+Technologies+Inc
1126	Pahara C. N. Charma M. Ancia V. D. & Palacubramanian D. (2012). Ammonia in the atmospheres A regions on
1130	amission sources, atmospheric chemistry and denosition on terrestrial hodice. Environmental Science and
1137	Pollution Research 20(11) 8092–8131 https://doi.org/10.1007/s11356-013-2051-9
1130	1 outlion Research, 20(11), 8092-0151. <u>https://doi.org/10.1007/511550-015-2051-9</u>
1140	Beiosano, F. P., & Waniska, R. D. (2004). Functionality of Bicarbonate Leaveners in Wheat Flour Tortillas. <i>Cereal</i>
1141	Chemistru, 81(1), 77–79. https://doi.org/10.1094/CCHEM.2004.81.1.77
1142	
1143	Birch, A. N., Petersen, M. A., & Hansen, Å. S. (2013). The aroma profile of wheat bread crumb influenced by yeast
1144	concentration and fermentation temperature. LWT - Food Science and Technology, 50(2), 480–488.
1145	https://doi.org/10.1016/j.lwt.2012.08.019
1146	
1147	Brondi, M., Eisa, M., Bortoletto-Santos, R., Drapanauskaite, D., Reddington, T., Williams, C., Ribeiro, C., &
1148	Baltrusaitis, J. (2023). Recovering, stabilizing, and reusing nitrogen and carbon from nutrient-containing
1149	liquid waste as ammonium carbonate fertilizer. Agriculture, 13(4), Article 4.
1150	<u>https://doi.org/10.3390/agriculture13040909</u>
1151	
1152	Buss, S., Herbert, A., Morgan, P., Thornton, S., & Smith, J. (2004). A Review of Ammonium Attenuation in Soil and
1153	Groundwater. Quarterly Journal of Engineering Geology and Hydrogeology - Q J ENG GEOL HYDROGEOL, 37,
1154	347-359. <u>https://doi.org/10.1144/1470-9236/04-005</u>
1155	
1156	Canali, G., Balestra, F., Glicerina, V., Pasini, F., Caboni, M. F., & Romani, S. (2020). Influence of different baking
1157	powders on physico-chemical, sensory and volatile compounds in discuits and their impact on textural
1150	https://doi.org/10.1007/c12107.020.04418.1
1159	1000000000000000000000000000000000000
1161	Center for Food Safety and Applied Nutrition (2024) Acrylamide EDA https://www.fda.gov/food/process-
1162	contaminants-food/acrylamide
1163	<u>containintanto robaj aci ytaintae</u>
1164	De Levn, I. (2014), Other Leavening Agents. In Bakery Products Science and Technology (pp. 175–181), John Wiley &
1165	Sons, Ltd. https://doi.org/10.1002/9781118792001.ch9
1166	
1167	Deshpande, A. G., Jones, M. R., van Dijk, N., Mullinger, N. J., Harvey, D., Nicoll, R., Toteva, G., Weerakoon, G.,
1168	Nissanka, S., Weerakoon, B., Grenier, M., Iwanicka, A., Duarte, F., Stephens, A., Ellis, C. J., Vieno, M.,
1169	Drewer, J., Wolseley, P. A., Nanayakkara, S., Sutton, M. A. (2024). Estimation of ammonia deposition to
1170	forest ecosystems in Scotland and Sri Lanka using wind-controlled NH3 enhancement experiments.
1171	Atmospheric Environment, 320, 120325. <u>https://doi.org/10.1016/j.atmosenv.2023.120325</u>
1172	
1173	Ding, B., Zheng, Q., Pan, M., Chiou, Y., Yan, F., & Li, Z. (2018). Microencapsulation of Ammonium Bicarbonate by
1174	Phase Separation and Using Palm Stearin/Carnauba Wax as Wall Materials. International Journal of Food
1175	Engineering, 14(7–8). <u>https://doi.org/10.1515/ijfe-2017-0270</u>
1176	
1177	Dressel, M., Eberle, H., Ripperger, W., Ruehenbeck, W., & Zwick, W. (1986). Preparation of ammonium carbamate
11/8	(United States Patent US456/294A). <u>https://patents.google.com/patent/US456/294A/en</u>
11/9	Durkeners B.M. Creeker D.M. & Brunner M. W. (1997) Association (11) 1 J. J. (11) D. J. (11) D. J.
1100	Durborow, K. M., Crosby, D. M., & Drunson, M. W. (1997). Ammonia in fish ponds. Journal of the Fisheries Research
1187	Doura of Canada, 52, 251 5-2505.
1182	ECHA (2023a) Ammonium carbonate registration dossier European Chemicals Agongy
1184	https://echa.europa.eu/registration_dossier/_/registered_dossier/11523/4/22
1185	mips.//cena.curopa.cu/registration-uossier/-/registereu-uossier/11525/4/22

1186 1187 1188	ECHA. (2023b). Ammonium hydrogencarbonate registration dossier. European Chemicals Agency. https://echa.europa.eu/registration-dossier/-/registered-dossier/14575/4/5
1189 1190 1191	Efimov, V. M., Naumova, T. N., Bykova, I. G., & Stroganova, L. A. (1982). <i>Process for producing ammonium carbonate</i> (United States Patent US4335088A). <u>https://patents.google.com/patent/US4335088A/en</u>
1191 1192 1193	Fields, S. (2004). Global Nitrogen: Cycling out of Control. Environmental Health Perspectives, 112(10), A556–A563.
1194 1195 1196 1197 1198	Fortes, A. D., Wood, I. G., Alfè, D., Hernández, E. R., Gutmann, M. J., & Sparkes, H. A. (2014). Structure, hydrogen bonding and thermal expansion of ammonium carbonate monohydrate. <i>Acta Crystallographica Section B:</i> <i>Structural Science, Crystal Engineering and Materials</i> , 70(6), 948–962. <u>https://doi.org/10.1107/S205252061402126X</u>
1199 1200 1201 1202	Frühling, Y., Claßen, T., Mobarak, M., Bauer, M., Zettel, V., Gatternig, B., Hitzmann, B., & Delgado, A. (2023). CO2 gas hydrate as an innovative leavening agent for baked goods. <i>Future Foods</i> , 7, 100213. <u>https://doi.org/10.1016/j.fufo.2022.100213</u>
1203 1204 1205	FSIS. (2024). Carbon Dioxide- Health Hazard Information Sheet. Food Safety and Inspection Services- USDA. https://www.fsis.usda.gov/sites/default/files/media_file/2020-08/Carbon-Dioxide.pdf
1205 1206 1207 1208	Galloway, J. N., Aber, J. D., Erisman, J. W., Seitzinger, S. P., Howarth, R. W., Cowling, E. B., & Cosby, B. J. (2003). The Nitrogen Cascade. <i>BioScience</i> , 53(4), 341. <u>https://doi.org/10.1641/0006-3568(2003)053[0341:TNC]2.0.CO;2</u>
1209 1210 1211	Gélinas, P. (2022). Gas sources in chemical leavening and other baker's yeast substitutes: Lessons from patents and science. <i>International Journal of Food Science & Technology</i> , 57(2), 865–880. <u>https://doi.org/10.1111/ijfs.15447</u>
1212 1213 1214	Guthrie, S., Giles, S., Dunkerley, F., & Tabaqchali, H. (2018). <i>The impact of ammonia emissions from agriculture on biodiversity</i> .
1215 1216 1217	Han, B., Butterly, C., Zhang, W., He, JZ., & Chen, D. (2020). Adsorbent materials for ammonium and ammonia removal: A review. <i>Journal of Cleaner Production</i> , 283, 124611. <u>https://doi.org/10.1016/j.jclepro.2020.124611</u>
1218 1219 1220 1221	Hazen, R. M., Hummer, D. R., Hystad, G., Downs, R. T., & Golden, J. J. (2016). Carbon mineral ecology: Predicting the undiscovered minerals of carbon. <i>American Mineralogist</i> , 101(4), 889–906. <u>https://doi.org/10.2138/am-2016- 5546</u>
1222 1223 1224	Herk, C. M. van, Mathijssen-Spiekman, E. a. M., & Zwart, D. de. (2003). Long distance nitrogen air pollution effects on lichens in Europe. <i>The Lichenologist</i> , 35(4), 347–359. <u>https://doi.org/10.1016/S0024-2829(03)00036-7</u>
1225 1226 1227	Howard, C. (2019). <i>The ammonia, carbon dioxide and water ternary system</i> [Doctoral Dissertation, UCL, University College London]. <u>https://discovery.ucl.ac.uk/id/eprint/10079079/1/Howard%20thesis.pdf</u>
1228 1229 1230	Huang, S., & Miskelly, D. (2016). Chapter 4–Optional Ingredients for Dough. In S. Huang & D. Miskelly (Eds.), <i>Steamed Breads</i> (pp. 47–63). Woodhead Publishing. <u>https://doi.org/10.1016/B978-0-08-100715-0.00004-5</u>
1231 1232 1233 1234	Huber, R., & Schoenlechner, R. (2017). Waffle production: Influence of batter ingredients on sticking of waffles at baking plates – Part II: effect of fat, leavening agent, and water. <i>Food Science & Nutrition</i> , 5(3), 513–520. <u>https://doi.org/10.1002/fsn3.425</u>
1235 1236 1237	Ingredients Network. (2020). AMPAK to offer encapsulated bakery ingredients. https://www.ingredientsnetwork.com/ampak-to-offer-encapsulated-bakery-ingredients-news082154.html
1238 1239 1240	Ivanchenko, L., Shapoval, I., Makarov, A., & Borsch, A. (2020). A physico-chemical analysis of carbon ammonium salts production technologies.
1241 1242 1243	Keystone Universal. (2017, May). Ammonium Carbonate Specification Sheet. Bakers Authority. https://www.bakersauthority.com/products/ammonia-powder-ammonium-carbonate
1244 1245 1246	Kollemparembil, A. M., Srivastava, S., Zettel, V., Gatternig, B., Delgado, A., Jekle, M., & Hitzmann, B. (2023). Application of CO2 Gas Hydrates as Leavening Agents in Black-and-White Cookies. <i>Foods</i> , 12(14), Article 14. <u>https://doi.org/10.3390/foods12142797</u>

1247	
1248	Komprda, T., Pridal, A., Mikulíková, R., Svoboda, Z., Cwiková, O., Nedomová, Š., & Sýkora, V. (2017). A
1249	combination of additives can synergically decrease acrylamide content in gingerbread without
1250	compromising sensory quality. Journal of the Science of Food and Agriculture, 97(3), 889–895.
1251	https://doi.org/10.1002/isfa.7811
1252	mport actively for the second se
1252	Kukurová K & Ciecarová Z (2024) Chapter 22 – Effect of inorganic calte on acrulamide formation in cereal
1255	warding a, R., & Clesarow, Z. (2024). Chapter 22 – Enerce to inforganic sants on a crystantice formation in cerear matrices. In V. Calmon & B. A. Moorel (Eds.). A and an is and (Casard Edition) (and 157, 471). Academic
1254	Breach https://doi.org/10.101/(2020.0.222.00110.2.0000/0.0
1255	rress. <u>https://doi.org/10.1016/D978-0-325-99119-5.00006-0</u>
1250	Kousen M. Clada I. Levine II. & Common D. (2014). Coalita Vernue Construct Politica, What's the Difference 2 Flour
1257	Kweon, M., Slade, L., Levine, H., & Gannon, D. (2014). Cookie- versus Cracker-baking – what's the Difference? Flour
1258	Functionality Requirements Explored by SKC and Alveography. Critical Reviews in Food Science and
1259	<i>Nutrition</i> , 54(1), 115–138. <u>https://doi.org/10.1080/10408398.2011.578469</u>
1260	
1261	MacFarlane, D. R., Cherepanov, P. V., Choi, J., Suryanto, B. H. R., Hodgetts, R. Y., Bakker, J. M., Ferrero Vallana, F.
1262	M., & Simonov, A. N. (2020). A Roadmap to the Ammonia Economy. <i>Joule</i> , 4(6), 1186–1205.
1263	https://doi.org/10.1016/j.joule.2020.04.004
1264	
1265	Mayer, P., Ramirez, A., Pezzella, G., Winter, B., Sarathy, S. M., Gascon, J., & Bardow, A. (2023). Blue and green
1266	ammonia production: A techno-economic and life cycle assessment perspective. <i>iScience</i> , 26(8), 107389.
1267	https://doi.org/10.1016/j.isci.2023.107389
1268	
1269	McCrory, P. (2006), Smelling salts, British Journal of Sports Medicine, 40(8), 659–660.
1270	https://doi.org/10.1136/bism.2006.029710
1271	
1272	Miller R (2016) Leavening Agents In B Caballero P M Finglas & F Toldrá (Eds.) Encuclonedia of Food and Health
1272	(nn 523-528) Academic Press, https://doi.org/10.1016/B978-0-12-384047-2.00418-9
1273	(pp. 020 020). Academic (1600. <u>Imps.</u>) / doiloig/10.1010/ 2010 0 12 00101 2.00110 2
1274	
1275	Mindet (2024) Techamacharita https://www.mindet.org/al/110481
1270	Mindat. (2024). Teschemuchente. <u>https://www.htmidat.org/gi/419481</u>
1277	Marrow A. L. Carrow A. Harrowson E. L. & Mustitude C. (2022). Investigation of Harrow Matale and Trace Elements
1270	Mocanu, A. L., Soare, A., Ongureanu, E. L., & Mussalea, G. (2025). Investigation of neavy metals and frace Elements
12/9	Content in Different Type of Biscuits. <i>Journal of Hygienic Engineering and Design,</i> 43.
1200	
1281	Moniuddin, S. S., & Khattar, D. (2024). Biochemistry, Ammonia. In StatPearls. StatPearls Publishing.
1282	http://www.ncbi.nlm.nih.gov/books/NBK541039/
1283	
1284	Muehling, J. K., Arnold, H. R., & House, J. E. (1995). Effects of particle size on the decomposition of ammonium
1285	carbonate. Thermochimica Acta, 255, 347–353. <u>https://doi.org/10.1016/0040-6031(94)02155-H</u>
1286	
1287	National Center for Biotechnology Information. (2024a). PubChem Compound Summary for CID 14013, Ammonium
1288	Bicarbonate. <u>https://pubchem.ncbi.nlm.nih.gov/compound/14013</u>
1289	
1290	National Center for Biotechnology Information. (2024b). PubChem Compound Summary for CID 517111, Ammonium
1291	Carbonate. https://pubchem.ncbi.nlm.nih.gov/compound/517111
1292	· · · · · ·
1293	National Center for Biotechnology Information. (2024c). PubChem Compound Summary for CID 517232, Ammonium
1294	carbamate. https://pubchem.ncbi.nlm.nih.gov/compound/517232
1295	
1296	National Research Council. (1981). Food Chemicals Codex: Third edition (p. 19642). National Academies Press
1297	https://doi.org/10.17226/19642
1298	
1299	National Research Council (2008) Ammonia Acute Exposure Guideline Levels. In Acute Exposure Guideline Levels for
1300	Selected Airborne Chemicale: Volume 6 National Academics Proce (US)
1201	https://www.pchi.plm.pib.com/hcelic/NDV207202/
1202	1000000000000000000000000000000000000
1202	Niver C M (100E) Createl merine autombiection A deficition with a second deficition of the secon
1303	NIXOR, 5. W. (1995). Coastal marine eutrophication: A definition, social causes, and future concerns. <i>Ophelia</i> , 41(1),
1304	199–219. <u>https://doi.org/10.1080/00/85236.1995.10422044</u>
1305	
1306	NOP. (2010, December 17). National Organic Standards Board recommendations (October 2010). National Organic
1005	D rogram

Ammonium Bicarbonate and Carbonate

1308 1309	https://www.ams.usda.gov/sites/default/files/media/NOP%20Response%20to%20NOSB%20Final%20Re commendations.pdf
1310	
1311 1312 1313	NOP. (2015). <i>Policy memorandum</i> 15-2 (<i>nanotechnology</i>). National Organic Program. <u>https://www.ams.usda.gov/sites/default/files/media/NOP-PM-15-2-Nanotechnology.pdf</u>
1313 1314 1315 1316	NOP. (2016a). <i>Guidance 5033-1, decision tree for classification of materials as synthetic or nonsynthetic</i> . National Organic Program. <u>https://www.ams.usda.gov/sites/default/files/media/NOP-Synthetic-NonSynthetic-DecisionTree.pdf</u>
1317 1318 1319 1320 1321	NOP. (2016b). NOP 5033-2, guidance, decision tree for classification of agricultural and nonagricultural materials for organic livestock production or handling. National Organic Program. <u>https://www.ams.usda.gov/sites/default/files/media/NOP-Ag-NonAg-DecisionTree.pdf</u>
1322 1323	NOP. (2023). <i>Technical evaluation report crops: Carbon dioxide</i> (pp. 1–50). National Organic Program. https://www.ams.usda.gov/sites/default/files/media/CarbonDioxide_Crops.pdf
1324 1325 1326 1327	NOSB. (1995). Technical advisory panel report: Ammonium bicarbonate and carbonate. National Organic Program. https://www.ams.usda.gov/sites/default/files/media/Ammonium%20Bicarbonate%20TR.pdf
1327 1328 1329 1330	NOSB. (2009). NOSB meeting minutes & transcripts, 1992-2009. National Organic Program. https://www.ams.usda.gov/rules-regulations/organic/petitioned-substances/magnesium-carbonate
1330 1331 1332 1333	NOSB. (2015, October). Sunset 2017 NOSB final review, handling substances §205.605(b). National Organic Program. https://www.ams.usda.gov/sites/default/files/media/HS%202017%20Sunset%20Final%20Rvw%20605%2 8a%29_%28b%29_606_final%20rec.pdf
1334 1335 1336 1337	NOSB. (2020, October 30). Formal recommendation. From: National Organic Standards Board (NOSB). To: The National Organic Program (NOP). National Organic Program. https://www.ams.usda.gov/sites/default/files/media/HS2022SunsetRecs_webpost.pdf
1338 1339 1340	Orentlicher, M., & Simon, M. M. (2018). Process to recover ammonium bicarbonate from wastewater (United States Patent US10106447B2).
1341 1342	<u>https://patents.google.com/patent/US10106447B2/en?assignee=Bion+Environmental+Technologies+Inc&</u> oq=Bion+Environmental+Technologies+Inc
1343 1344 1345 1346	Organic Foods Production Act of 1990, 7 U.S.C. chapter 94 (1990). https://uscode.house.gov/view.xhtml?path=/prelim@title7/chapter94&edition=prelim
1340 1347 1348 1349 1350	Page, F. G. (2013). Baking Powder and Self-Rising Flour (1) in Nineteenth-Century Britain: The Carbon Dioxide Aerations of Henry Jones and Alfred Bird. In <i>Bulletin for the History of Chemistry</i> (Vol. 38). Division of the History of Chemistry of the American Chemical Society. <u>https://acshist.scs.illinois.edu/bulletin_open_access/FullIssues/vol38-2.pdf#page=60</u>
1351 1352 1353 1354	Pasqualone, A., Haider, N. N., Summo, C., Coldea, T. E., George, S. S., & Altemimi, A. B. (2021). Biscuit Contaminants, Their Sources and Mitigation Strategies: A Review. <i>Foods</i> , 10(11), 2751. <u>https://doi.org/10.3390/foods10112751</u>
1355 1356 1357 1358 1359 1360	Pattabathula, V., & Richardson, J. (2016). Introduction to Ammonia Production. Back to Basics. Penfield, M. P., & Campbell, A. M. (1990). Chapter 18 – Leavening agents. In M. P. Penfield & A. M. Campbell (Eds.), Experimental Food Science (Third Edition) (pp. 406–417). Academic Press. <u>https://doi.org/10.1016/B978-0-12-157920-3.50022-3</u>
1360 1361 1362 1363	Rodriguez Sandoval, E., Otero-Guzmán, N. C., & Tabares-Londoño, J. A. (2020). Influence of different types of baking powder on quality properties of muffins. <i>DYNA</i> , 87(214), 9–16. https://doi.org/10.15446/dyna.v87n214.83549
1364 1365 1366 1367	Rotz, C. A. (2023). Impact of Beef Cattle on the Environment [abstract]. <i>American Dairy Science Association Proceedings</i> . https://www.ars.usda.gov/research/publications/publication/?seqNo115=402563

1368 1 1369	Rotz, C. A., Asem-Hiablie, S., Place, S., & Thoma, G. (2019). Environmental footprints of beef cattle production in the United States. <i>Agricultural Systems</i> , 169, 1–13. <u>https://doi.org/10.1016/j.agsy.2018.11.005</u>
1370 1371 1372 1373	Royal Society of Chemistry. (2024). <i>Ammonium carbonate</i> . The Merck Index Online. <u>https://merckindex-rsc-org.nal.idm.oclc.org/monographs/m1775</u>
1374 1374 1375 1376	Sadd, P. A., Hamlet, C. G., & Liang, L. (2008). Effectiveness of Methods for Reducing Acrylamide in Bakery Products. <i>Journal of Agricultural and Food Chemistry</i> , 56(15), 6154–6161. <u>https://doi.org/10.1021/jf7037482</u>
1370 1377 9 1378 1379	Sharma, S., Singh, T., Singh, A., Singh, B., & Kaur, A. (2017). Effect of Different Bicarbonates as Leavening Agents in Combination on Product Characteristics of Cookies and Cake.
1377 1380 9 1381 1382 1383 1383	Sheppard, L. J., Leith, I. D., Mizunuma, T., Neil Cape, J., Crossley, A., Leeson, S., Sutton, M. A., van Dijk, N., & Fowler, D. (2011). Dry deposition of ammonia gas drives species change faster than wet deposition of ammonium ions: Evidence from a long-term field manipulation. <i>Global Change Biology</i> , 17(12), 3589–3607. <u>https://doi.org/10.1111/j.1365-2486.2011.02478.x</u>
1385 9 1386 1387 1388	Siddiqui, O., Ishaq, H., Chehade, G., & Dincer, I. (2020). Performance investigation of a new renewable energy-based carbon dioxide capturing system with aqueous ammonia. <i>International Journal of Energy Research</i> , 44(3), 2252– 2263. <u>https://doi.org/10.1002/er.5087</u>
1388 1389 9 1390 1391	Spectrum Chemical. (2014, October 12). <i>Ammonium Carbonate Safety Data Sheet</i> . Spectrum Chemical. https://www.statlab.com/pdfs/sds/SSSPA17.pdf
1392 9 1393 1394 1395	Srivastava, S., Kollemparembil, A. M., Zettel, V., Claßen, T., Mobarak, M., Gatternig, B., Delgado, A., Jekle, M., & Hitzmann, B. (2022). An Innovative Approach in the Baking of Bread with CO2 Gas Hydrates as Leavening Agents. <i>Foods</i> , 11(22), 3570. <u>https://doi.org/10.3390/foods11223570</u>
1396 S	Sumnu, S. G., & Sahin, S. (2008). Food Engineering Aspects of Baking Sweet Goods. CRC Press.
1398 9 1399 1399	Sutter, D., & Mazzotti, M. (2017). Solubility and Growth Kinetics of Ammonium Bicarbonate in Aqueous Solution. Crystal Growth & Design, 17(6), 3048–3054. <u>https://doi.org/10.1021/acs.cgd.6b01751</u>
1401 1402 1403 1404 1405	Tang, Y. S., Dragosits, U., van Dijk, N., Love, L., Simmons, I., & Sutton, M. A. (2009). Assessment of Ammonia and Ammonium Trends and Relationship to Critical Levels in the UK National Ammonia Monitoring Network (NAMN). In M. A. Sutton, S. Reis, & S. M. H. Baker (Eds.), <i>Atmospheric Ammonia: Detecting emission changes</i> <i>and environmental impacts</i> (pp. 187–194). Springer Netherlands. <u>https://doi.org/10.1007/978-1-4020-9121-6_13</u>
1406 1407 1 1408	The Chemical Company. (2024). <i>Ammonium Carbonate – The Chemical Company</i> . <u>https://thechemco.com/chemical/ammonium-carbonate/</u>
1409 1410	The Royal Society. (2020). Ammonia: Zero-carbon fertiliser, fuel and energy store.
1411 1412 1413 1414	Ucko, D. A. (1982a). FOURTEEN - Acids, bases, and salts. In D. A. Ucko (Ed.), <i>Basics for Chemistry</i> (pp. 447–480). Academic Press. <u>https://doi.org/10.1016/B978-0-12-705960-0.50018-8</u>
1415 1416 1417	Ucko, D. A. (1982b). SIX - Chemical bonding. In D. A. Ucko (Ed.), <i>Basics for Chemistry</i> (pp. 155–184). Academic Press. https://doi.org/10.1016/B978-0-12-705960-0.50010-3
1418 1419 1420 1421	U.S. FDA. (2000, August). <i>Guidance for industry: Action levels for poisonous or deleterious substances in human food and</i> <i>animal feed</i> . U.S. Food & Drug Administration; FDA. <u>https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-action-levels-poisonous-or-deleterious-substances-human-food-and-animal-feed</u>
1422 1423 1424 1425 1426	US FDA. (2023, July 6). Understanding how the FDA regulates food additives and GRAS ingredients. FDA; FDA. https://www.fda.gov/food/food-additives-and-gras-ingredients-information-consumers/understanding- how-fda-regulates-food-additives-and-gras-ingredients

1427 1428 1429	U.S. Pharmacopeia. (2024). USP-FCC Ammonium Bicarbonate. Ammonium Bicarbonate, Monograph. https://online.foodchemicalscodex.org/uspfcc/current-document/5_GUID-FC2A54F2-A597-40B0-9814- 600C79826B5E_3_en-US?source=Quick%20Search&highlight=ammonium%20carbonate
1430 1431 1432 1433	Van Damme, M., Clarisse, L., Whitburn, S., Hadji-Lazaro, J., Hurtmans, D., Clerbaux, C., & Coheur, PF. (2018). Industrial and agricultural ammonia point sources exposed. <i>Nature</i> , 564(7734), 99–103. <u>https://doi.org/10.1038/s41586-018-0747-1</u>
1434 1435 1436 1437	van der Sman, R. G. M. (2021). Thermodynamic description of the chemical leavening in biscuits. <i>Current Research in Food Science</i> , 4, 191–199. <u>https://doi.org/10.1016/j.crfs.2021.03.006</u>
1437 1438 1439 1440	Vetter, J. L. (2003). Leavening Agents. In B. Caballero (Ed.), <i>Encyclopedia of Food Sciences and Nutrition (Second Edition)</i> (pp. 3485–3490). Academic Press. <u>https://doi.org/10.1016/B0-12-227055-X/00683-0</u>
1440 1441 1442 1443	Wang, S., Liu, F., Chen, C., & Xu, X. (2007). Life cycle emissions of greenhouse gas for ammonia scrubbing technology. <i>Korean Journal of Chemical Engineering</i> , 24(3), 495–498. <u>https://doi.org/10.1007/s11814-007-0086-</u>
1444 1445 1446	Weston, C., Papcun, J. R., & Dery, M. (2000). Ammonium compounds. Kirk-Othmer Encyclopedia of Chemical Technology.
1447 1448 1449 1450 1451	World Health Organization, & Food and Agriculture Organization of the United Nations. (2009). Code of Practice for the Reduction of Acrylamide in Foods (Version First edition). FAO/WHO. <u>https://www.fao.org/fao-who- codexalimentarius/sh- proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards %252FCXC%2B67-2009%252FCXC_067e.pdf</u>
1452 1453 1454	Zapp, KH., Wostbrock, KH., Sato, K., Zwick, W., & Mayer, D. (1985). Ammonium compounds. In <i>Ullmann's Encyclopedia of Industrial Chemistry</i> (Fifth edition, pp. 243–263). VCH.
1455 1456 1457 1458	Zhuang, Q., Clements, B., & Li, Y. (2012). From ammonium bicarbonate fertilizer production process to power plant CO2 capture. International Journal of Greenhouse Gas Control, 10, 56–63. <u>https://doi.org/10.1016/j.ijggc.2012.05.019</u>
1460 1461	Zhuang, Q., Pomalis, R., Zheng, L., & Clements, B. (2011). Ammonia-based carbon dioxide capture technology: Issues and solutions. <i>Energy Procedia</i> , 4, 1459–1470. <u>https://doi.org/10.1016/j.egypro.2011.02.012</u>