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Compiled by the Organic Materials Review Institute (OMRI) for the USDA National Organic Program 

Identification 1 

Chemical Names: 2 
sucrose octanoate esters 3 
 4 
Other Name: 5 
sucrose octanoate; alpha-D-glucopyranosyl - beta-6 
D-fructofuranosyl ocanoate; sucrose caprylate; 7 
mono-, di-, and triesters of sucrose octanoate 8 
 9 
Trade Names: 10 
Organishield Sucrose Octanoate (40%); 11 
Organishield Sucrose Octanoate Manufacturing 12 
Use Product 13 

 14 
CAS Numbers: 15 
42922-74-7 (monooctanoate) 16 
58064-47-4 (dioctanoate) 17 
 18 
Other Codes: 19 
OPP Chemical Code: 035300 20 
EC/EINESC Number 256-002-9 (monooctanoate) 21 
EC/EINECS Number 261-088-6 (dioctanoate) 22 
UNII: 7MUS7RP47D (monooctanoate) 23 
UNII: J75MK4RJET (dioctanoate) 24 
 25 

Summary 26 
 27 
This limited scope technical report provides information to the National Organic Standards Board (NOSB) to 28 
support the sunset review of sucrose octanoate esters, listed at: 29 

• 7 CFR 205.601(e)(10) in crop production as an insecticide (including acaricides or mite control) in 30 
accordance with approved labeling (per the substance’s annotation). 31 

• § 205.603(b)(10) in organic livestock, as a topical treatment, external parasiticide or local anesthetic as 32 
applicable, in accordance with approved labeling (per the substance’s annotation). 33 

 34 
Sucrose octanoate esters (SOEs) were petitioned in 2004 for addition to the National List of Allowed and Prohibited 35 
Substances (hereafter referred to as the “National List”) at § 205.601 for use as an insecticide in organic crop 36 
production and at § 205.603 for use as an external parasiticide for organic livestock. The NOSB recommended their 37 
addition to the National List in 2005 (NOSB, 2005). The National Organic Program (NOP) implemented the 38 
recommendation in 2007, when it added SOEs to § 205.601(e) and § 205.603(b). Both listings state: “Sucrose 39 
octanoate esters (CAS #s 42922-74-7; 58064-47-4)—in accordance with approved labeling” (72 FR 69569, 40 
December 10, 2007). 41 
 42 
SOEs were renewed on the National List through the sunset review process in 2010 and 2015 (NOSB, 2010a, 2010b, 43 
2015, 2015). In 2018, the NOSB recommended removing SOEs from the National List due to low reported use 44 
(NOSB, 2018), but the NOP renewed the listings in 2022 (87 FR 10930, February 28, 2022). AMS renewed the 45 
listing due to the following factors: 46 
  47 

1. Lack of approved alternatives: Most public comments favored keeping SOEs, emphasizing that their 48 
removal would negatively impact organic farmers and beekeepers. Commenters highlighted that SOEs are 49 
a key ingredient in OrganiShield, a widely used product in Integrated Pest Management (IPM) systems. 50 
They further stressed that no other available product offers the same combination of safety, efficacy, and 51 
organic compliance for crop and livestock production, reinforcing the need to maintain SOEs on the list. 52 

2. Environmentally friendly pesticide: The use of sucrose octanoate esters benefits crop-friendly insects such 53 
as pollinators, biodegrades rapidly after use, and does not negatively impact the environment. 54 

3. Change in market situation: Since the NOSB’s 2018 recommendation, products have been registered with 55 
the EPA. 56 

 57 
As sucrose octanoate esters are listed at § 205.601 and § 205.603, synthetic forms are allowed. 58 
 59 

Focus Questions 60 
 61 
Focus Question #1: Information needed on whether natural sources of raw materials are used in 62 
manufacturing SOEs. 63 
Sucrose octanoate esters (SOEs) are a class of compounds manufactured from sucrose and octanoic acid (Puterka et 64 
al., 2003). Producers use SOEs as biopesticides to control soft-bodied insects such as mites, aphids, whiteflies, etc. 65 

https://www.federalregister.gov/documents/2007/12/10/E7-23880/national-organic-program-nop-amendments-to-the-national-list-of-allowed-and-prohibited-substances#page-69572
https://www.federalregister.gov/documents/2022/02/28/2022-03851/national-organic-program-amendments-to-the-national-list-of-allowed-and-prohibited-substances-2022
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(Buta et al., 1993; Cantrell et al., 2012; J. S. Hu et al., 2010; McKenzie et al., 2005; Puterka et al., 2003).1 SOEs are 66 
chemical analogs of the naturally occurring sugar ester isolates of Nicotiana plant species, and mimic their pest 67 
control properties (Severson et al., 1984, 1985). SOEs are synthesized commercially, and the patented process 68 
(Farone & Serfass, 1998) uses materials such as alcohol, several catalysts, and solvents, in addition to sucrose and 69 
octanoic acid (Desai & Gruning, 1999; Huang et al., 2010; Song et al., 2006). 70 
 71 
The steps involved in the synthesis of SOEs are detailed below, along with information on the sources of raw 72 
materials. 73 
 74 
Step 1: Esterification of fatty acid 75 
The first step in the synthesis of sucrose octanoate esters is to react octanoic acid (a C8 fatty acid) with methanol or 76 
ethanol in the presence of a sulfuric acid catalyst to form fatty acid ester (methyl octanoate or ethyl octanoate) and 77 
water (Castanheiro, 2021; PubChem, n.d.) (see Equation 1). 78 
 79 

𝐶𝐶8𝐻𝐻16𝑂𝑂2 + 𝐶𝐶𝐻𝐻3𝑂𝑂𝐻𝐻 → 𝐶𝐶9𝐻𝐻18𝑂𝑂2 + 𝐻𝐻2𝑂𝑂 80 
(octanoic acid) + (methanol) → (methyl octanoate) + (water) 81 

Catalyst not shown 82 
Equation 1 83 

 84 
Octanoic acid sources 85 
Octanoic acid, also known as caprylic acid, is a naturally occurring fatty acid present in plants and some animal 86 
materials (PubChem, n.d.). We were unable to find recent statistics on the sources and production volume of 87 
octanoic acid. However, commercially available octanoic acid is produced from at least two different processes: 88 

• oxidation of octanol (Krems Chem, n.d.; PubChem, n.d.; Riemenschneider, 2000) 89 
• extraction from natural oils (Acme-Hardesty, n.d.; Burdock & Fenaroli, 2010; PubChem, n.d.) 90 

 91 
Researchers have also developed microbial fermentation techniques to produce octanoic acid (Deng et al., 2020; P. 92 
Liu et al., 2013; Wernig et al., 2021; Yan & Pfleger, 2020). It is unclear whether these are used commercially, but it 93 
is possible. Use of microbes provides a scalable, controllable, and efficient method to produce octanoic acid as 94 
described in the studies cited above. Although scientifically feasible, using microbes to commercially produce 95 
octanoic acid has its challenges. For example, octanoic acid is an antimicrobial at higher concentration and inhibits 96 
microbial growth. Thus, it shuts down its own production process after reaching a concentration that is inhibitory to 97 
the strain producing it. Optimizing microbial strains to balance production efficiency and tolerance is crucial for 98 
industrial applications. 99 
 100 
Industrial production of octanoic acid often relies on the oxidation of octanol, an eight-carbon alcohol. The 101 
oxidation process converts the alcohol into the corresponding carboxylic acid (Ishida et al., 2012). The reaction 102 
proceeds through the activation of molecular oxygen in the alcohol, transforming the hydroxyl group (-OH) to a 103 
carboxylic acid group (-COOH) in the presence of catalysts such as gold or ruthenium (Ishida et al., 2012). This 104 
constitutes a chemical change. Using NOP 5033-1 Guidance: Decision Tree for Classification of Materials as 105 
Synthetic or Nonsynthetic (NOP, 2016), we would classify octanoic acid produced from this method as synthetic. 106 
 107 
Octanoic acid can also be isolated from coconut oil, palm oil, or milk fats. The extraction process typically involves 108 
several methods, including solvent extraction (Zhang et al., 2018), distillation (Zhang et al., 2018), and supercritical 109 
fluid extraction (Wrona et al., 2017). We found one reference that also mentioned isolating octanoic acid using 110 
saponification (PubChem, n.d.). Additionally, microbial fermentation techniques, particularly using engineered 111 
strains of Saccharomyces cerevisiae and Escherichia coli, have been explored as alternative methods for octanoic 112 
acid production, offering potential for biosynthesis (Deng et al., 2020; Y. Hu et al., 2019; Yan & Pfleger, 2020). 113 
 114 
Solvent extraction 115 
In solvent extraction, organic solvents, like ethanol or methanol, are utilized to dissolve the fatty acids, separating 116 
them from the raw material. The process usually follows these steps (Zhang et al., 2018): 117 

1. The solvent penetrates the solid matrix. 118 
2. The fatty acids are dissolved. 119 
3. The solutes diffuse out of the raw plant material or oil. 120 
4. The extracted solutes are collected. 121 

 
1 In agricultural settings, soft-bodied insects are often pests. They tend to be sucking insects which not only damage crops through feeding, but 
also by transmitting diseases. However, soft bodied insects also have beneficial ecological functions. For example, aphids are a major food source 
for small birds and arthropod predators (Loxdale et al., 2020). Aphids also form complex relationships with ants, where ants feed on honeydew 
produced by aphids (Tegelaar et al., 2012). 
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 122 
Distillation 123 
In the distillation method, octanoic acid is separated from the raw material based on its boiling point (Zhang et al., 124 
2018). 125 
 126 
Supercritical fluid extraction 127 
Supercritical fluid extraction (SFE) employs supercritical carbon dioxide as a solvent to efficiently extract non-polar 128 
compounds, including octanoic acid. SFE is advantageous because (P. Liu et al., 2013; Wrona et al., 2017; Zhang et 129 
al., 2018): 130 

• it allows temperature sensitive compounds to be extracted without thermal degradation. 131 
• it produces a high yield with a lower environmental impact compared to traditional solvents. 132 

 133 
Provided that synthetic solvents used to extract octanoic acid from plant oils are removed, the resulting material 134 
could be classified as nonsynthetic according to NOP 5033-1 Guidance: Decision Tree for Classification of 135 
Materials as Synthetic or Nonsynthetic (NOP, 2016). 136 
 137 
Saponification 138 
Saponification typically relies on heat and the use of alkaline substances to break apart triglycerides found in oils. 139 
Triglycerides are composed of fatty acids connected to each other via a glycerol bridge. Saponification chemically 140 
separates the fatty acids from the glycerol. While we did not find a specific manufacturing process that describes in 141 
detail the production of octanoic acids in this manner, PubChem (n.d.) does include a note saying that some octanoic 142 
acid is produced via saponification. Saponification is a synthetic process. 143 
 144 
Microbial fermentation 145 
Microbial fermentation is another process for obtaining octanoic acid, using bacteria or yeasts like Saccharomyces 146 
cerevisiae. These organisms can produce octanoic acid as a secondary metabolite when cultivated in bioreactors 147 
under specific conditions (Y. Hu et al., 2019; Yan & Pfleger, 2020). However, microorganisms used in this process 148 
are genetically engineered in some cases to withstand the toxicity of specific fatty acids that cause membrane 149 
damage (Chen et al., 2018). 150 
 151 
Thus, depending on the method employed for octanoic acid preparation, the material can be classified as synthetic or 152 
nonsynthetic per the NOP 5033-1 Guidance Decision Tree for Classification of Materials as Synthetic or 153 
Nonsynthetic (NOP, 2016). 154 
 155 
Ethanol and methanol sources 156 
Ethanol is obtained from the fermentation of sugars from corn or sugarcane, or via the hydration of ethylene (Bai et 157 
al., 2008; Bedia et al., 2011; Hidzir et al., 2014). The former can be a nonsynthetic process, while the latter is 158 
synthetic. Methanol is synthesized via the catalytic hydrogenation of carbon dioxide (P. Liu et al., 2010), which is 159 
also a synthetic process. 160 
 161 
Step 2: Neutralization and separation of the catalyst 162 
The sulfuric acid catalyst used in the reaction of octanoic acid and methanol (or ethanol) is neutralized by a metal 163 
carbonate (e.g., sodium carbonate or potassium carbonate), forming metal sulfate (e.g., sodium sulfate). The 164 
octanoate ester is separated from these byproducts using physical methods such as filtration or decantation (Pavia, 165 
1995). 166 
 167 
Catalyst and neutralizer sources 168 
Sulfuric acid is created from synthetic chemical processes involving the catalytic oxidation of sulfur dioxide (Katada 169 
et al., 2003; NIH, n.d.). Sodium carbonate is obtained from salt (sodium chloride) and limestone (calcium carbonate) 170 
via the Solvay process (Steinhauser, 2008). It can also be produced through the trona process, and rarely via solution 171 
mining of nahcolite, as described in the 2025 Sodium Bicarbonate technical report (in draft at the time of writing). 172 
Potassium carbonate is primarily made by the carbonation reaction between potassium hydroxide and carbon 173 
dioxide (NIH, n.d.). 174 
 175 
Step 3: Second esterification with sugar 176 
The recovered fatty acid ester is reacted with sucrose that is dissolved in dimethyl sulfoxide (Li et al., 2008), in the 177 
presence of a metal carbonate catalyst to produce the sucrose ester (Chortyk et al., 1996). 178 
 179 
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Sucrose sources 180 
The sucrose (a sugar) commonly used in this step is obtained from natural sources such as sugar cane and sugar 181 
beets. 182 
 183 
A generalized sugar cane manufacturing process is as follows (Babu & Adeyeye, 2024; OMRI, 2024): 184 

1. The plant’s stalks are harvested and crushed in a mill to extract the juice. 185 
2. Lime in the form of calcium hydroxide is added to neutralize the natural acidity of the juice and cause 186 

impurities to precipitate. In some manufacturing processes, other clarifying agents, including carbon 187 
dioxide, may also be used. 188 

3. The clarified juice is decanted to separate it from the precipitated impurities and lime residues. 189 
4. The solution is then evaporated to yield concentrated syrup. 190 
5. Sugar crystals are added to initiate the crystallization process. 191 
6. The syrup is boiled under vacuum to complete the crystallization, then cooled and centrifuged to separate 192 

the crystallized sugar from the molasses. 193 
 194 
Similarly, sugar beet roots are harvested and juice is extracted, followed by crystallization to produce sucrose 195 
(López et al., 2009). The process meets the criteria for nonsynthetic classification according to Guidance 196 
NOP 5033‑1 Decision Tree for Classification of Materials as Synthetic or Nonsynthetic (NOP, 2016).2 197 
 198 
Dimethyl sulfoxide sources 199 
Dimethyl sulfoxide is a widely used polar solvent that is synthesized through the oxidation of dimethyl sulfide, a 200 
byproduct of the paper and pulp industry (Xiang et al., 2017). 201 
 202 
Step 4: Vacuum distillation and emulsification 203 
Dimethyl sulfoxide is removed from the reaction mixture via vacuum distillation (Wagner et al., 1991), a common 204 
method for solvent removal in esterification reactions. Water is added to emulsify the sugar ester product and any 205 
unreacted fatty acid ester. The unreacted sugar and metal carbonate dissolve in the water. 206 
 207 
Step 5: Separation of emulsified product 208 
The emulsion is heated to separate the sugar ester from the aqueous solution containing unreacted sugar and metal 209 
carbonate (Farone & Serfass, 1998). Manufacturers can also use mechanical means to break the emulsion and 210 
separate the sugar ester. 211 
 212 
Step 6: Purification and recovery 213 
The sugar ester product is purified by dissolving any remaining unreacted fatty acid ester in ethyl acetate. Any 214 
residual dimethyl sulfoxide, alcohol, and ethyl acetate remaining in the reaction mixture from previous stages are 215 
recovered through distillation. Any unreacted, concentrated sugar is recovered for reuse. This step ensures that no 216 
raw materials are wasted (Farone & Serfass, 1998). 217 
 218 
Ethyl acetate source 219 
Ethyl acetate is synthesized by the esterification of ethanol and acetic acid (Gurav & Bokade, 2010). 220 
 221 
In summary, the principal raw materials used in the preparation of SOEs are: 222 

• octanoic acid – produced from both synthetic and nonsynthetic sources 223 
• alcohol (methanol or ethanol) – produced from synthetic and nonsynthetic sources 224 
• sucrose – usually produced from nonsynthetic sources 225 

 226 
The manufacturing process involves the use of several processing aids, some of which may be nonsynthetic (e.g., 227 
sodium bicarbonate), and others which are from synthetic sources (e.g., sulfuric acid, potassium carbonate, dimethyl 228 
sulfoxide, and ethyl acetate). 229 
 230 
Focus Question #2: Information needed on impact of SOEs on the environment and non-target organisms 231 
prior to biodegradation. Is there any available information on detrimental physiological effects of SOEs on 232 
soil organisms and insects that were not covered in the current TR? 233 
Sucrose octanoate esters (SOEs) have a relatively low environmental impact, especially when used as biopesticides. 234 
Liu et al. (1996) noted that SOEs are a favorable option when compared to conventional synthetic pesticides due to 235 

 
2 Most sugar beets grown in the United States and Canada are genetically modified for herbicide resistance (ISAAA Inc., 2024; The Non-GMO 
project, 2023; The Sugar Assocation, 2017). However, inputs produced from herbicide-tolerant crops (such as soya and sugar beets) are often 
considered allowed by certifiers and material review organizations in organic crop production when purified. 
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their natural origin, biodegradability, and non-toxic effects on non-target organisms. However, we found only 236 
limited information evaluating the impact of SOEs on the environment and non-target organisms. 237 
 238 
Impact on the environment 239 
SOEs are readily biodegradable due to their chemical structure, which is based on sucrose and octanoic acid (T. Liu 240 
et al., 1996). Naturally occurring microorganisms in soil and water can break down these compounds. They 241 
biodegrade within approximately five days at temperatures ranging from 68oF to 80oF in both aerobic and anaerobic 242 
conditions (Figge & Haigh-Baird, 1997). The degradation process typically produces harmless byproducts such as 243 
carbon dioxide and water (Figge & Haigh-Baird, 1997). Some of the degradation products are incorporated as 244 
microbial biomass (Figge & Haigh-Baird, 1997). 245 
 246 
Impact on non-target organisms prior to biodegradation 247 
In 2020, the EPA evaluated SOEs potential impacts on non-target insects and other organisms (U.S. EPA, 2006a, 248 
2006b, 2020). They determined that there is minimal potential for exposure and toxicity in non-target insects and 249 
fish, or other non-target organisms, soil, and water. The EPA established that SOEs have a minimal toxicity profile 250 
since their action is based on physical effects rather than biochemical toxicity. This characteristic makes their action 251 
specific to soft-bodies insects without producing general toxic metabolites, thus decreasing the likelihood of 252 
harming beneficial insects. Moreover, due to their biodegradable nature, the substances were found to pose minimal 253 
risk to mammals and birds, further supporting their ecological safety (U.S. EPA, 2020). 254 
 255 
SOEs primarily target soft-bodied insects by physically disrupting the lipid layer in their cuticle, leading to 256 
dehydration and death (Li et al., 2008; McKenzie & Puterka, 2004). Insects with thicker, more robust exoskeletons 257 
are not affected (Michaud & McKenzie, 2004). The mechanism of action of SOEs does not rely on targeting a 258 
biochemical pathway common to all insects, therefore, SOEs have minimal effects on non-target organisms such as 259 
pollinators (e.g., bees and ladybugs), earthworms, and other soil organisms (Chortyk et al., 1996; Michaud & 260 
McKenzie, 2004). 261 
 262 
Michaud and McKenzie (2004) assessed the toxicity of SOEs on multiple beneficial insect species representing 263 
different orders within the citrus ecosystem. The study revealed that several beneficial insects, including lady beetles 264 
(Coccinellidae), lacewings (Chrysopidae), and red scale parasitoids (Anthocoridae), showed high survival rates 265 
when exposed to SOEs residues at approximately 8,000 ppm of application, a concentration corresponding to twice 266 
the recommended field rate required to kill soft-bodied pests. 267 
 268 
Detrimental physiological effects of SOEs on soil organisms and insects: 269 
SOEs’ target soft-bodied insects on food and non-food crops, including (NOP, 2005): 270 

• thrips 271 
• aphids 272 
• whiteflies 273 
• psyllids 274 
• mites 275 

 276 
Livestock operations may use SOEs to control immature forms of certain gnat species and Varroa mites on adult 277 
honeybees (NOP, 2005). Koul et al. (2012) noted that SOEs are not effective controls for lepidopteran (moth) pests, 278 
and that insects generally can detoxify secondary compounds from plants (such as SOEs). 279 
 280 
Soil organisms and non-target insects may be exposed to SOEs during and after applications until the compounds 281 
biodegrade in approximately five days. Direct and specific detrimental effects from SOEs on soil organisms have 282 
not been extensively documented. We did not find literature that reports detrimental physiological effects of SOEs 283 
on soil organisms, soil microbiome, or non-target insects. According to current literature, SOEs have low toxicity 284 
and biodegrade rapidly (Figge & Haigh-Baird, 1997; Koul et al., 2012; T. Liu et al., 1996). When applied according 285 
to EPA-approved label instructions, SOEs pose minimal risk to non-target insects and soil organisms. 286 
 287 
Focus Question #3: An update on the efficacy, performance as well as health and environmental impacts of 288 
natural alternatives to SOEs will be very helpful. 289 
Several natural compounds can serve as biopesticides, offering similar environmentally friendly, low-toxicity, and 290 
biodegradable characteristics as SOEs. These alternatives typically originate from plant extracts, microbial products, 291 
or other naturally occurring substances and are often used in sustainable agriculture and integrated pest management 292 
systems. We did not find studies that compare the efficacy or the non-targeted deleterious effects of these 293 
compounds to those of SOEs. Therefore, a study of these compounds and whether they could act as alternatives for 294 
SOEs is needed. 295 
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 296 
Neem Oil 297 
Extracted from the seeds of the neem tree (Azadirachta indica), neem oil contains active compounds, such as 298 
azadirachtin, which has insecticidal properties (Bond et al., 2012; Chaudhary et al., 2017). Neem oil primarily 299 
targets soft-bodied insects such as aphids and whiteflies, as well as mites (Kilani-Morakchi et al., 2021; Tang et al., 300 
2002). Neem oil works through multiple mechanisms to control soft-bodied insect pests. For example, azadirachtin 301 
acts as a powerful repellent, reduces insect feeding, and disrupts growth (Bond et al., 2012; Kilani-Morakchi et al., 302 
2021; Shannag et al., 2015). Neem oil can also interrupt oviposition and sperm production in insects, thereby 303 
reducing breeding and production of offspring (Chaudhary et al., 2017). 304 
 305 
Neem oil can be applied as a foliar spray (Sundaram & Curry, 1994), soil drench (Javed et al., 2008), seed treatment 306 
(da Costa et al., 2014), or as an ingredient in the diet of pests (Duarte et al., 2020). 307 
 308 
Neem oil is biodegradable and has low impact on beneficial insects (Kilani-Morakchi et al., 2021). The 309 
biodegradability of neem oil is primarily due to its organic composition, consisting mainly of triglycerides, steroids 310 
and triterpenoids (Campos et al., 2016). These organic components are readily broken down by environmental 311 
factors such as light (Caboni et al., 2006), and by microorganisms in soil and water ecosystems (Campos et al., 312 
2016). Specifically, azadirachtin, the primary active component in neem oil, has a relatively short half-life in the 313 
environment, ranging from: 314 

• 3 to 44 days in soil (Bond et al., 2012) 315 
• 48 minutes to 4 days in water (Bond et al., 2012) 316 
• 15-60 days on crops such as cowpea and maize infested with Callosobruchus maculatus and Sitophilus 317 

zeamais (Tofel et al., 2016) 318 
 319 
Azadirachtins and related compounds degrade rapidly when exposed to sunlight, with half-lives of ~11 hours for 320 
azadirachtin A and 5.5 hours for azadirachtin B (Caboni et al., 2006). This rapid breakdown ensures that neem oil 321 
does not persist in the environment, reducing the risk of long-term ecological impact. 322 
 323 
Although beneficial as an insecticide, neem oil should be used carefully, as cases of neem oil poisoning in humans 324 
have been reported (Bhaskar et al., 2010; Mishra & Dave, 2013). These poisoning cases are primarily due to 325 
accidental oral consumption, resulting in toxic encephalopathy (Mishra & Dave, 2013) or bilateral vision loss 326 
(Bhaskar et al., 2010). 327 
 328 
Pyrethrins 329 
Pyrethrins are natural insecticides extracted from the flowers of chrysanthemums (Chrysanthemum cinerariifolium). 330 
Pyrethrins attack the nervous system of insects, primarily interacting with voltage-gated sodium channels in insect 331 
nerve cells, leading to their depolarization (Soderlund, 2012). This leads to paralysis and death. 332 
 333 
Pyrethrins are effective against a broad range of pests, including flies, mosquitoes, beetles, and moths (Hodoșan et 334 
al., 2023). They degrade quickly in sunlight and have low persistence in the environment (Agency for Toxic 335 
Substances and Disease Registry, 2014). They are relatively non-toxic to humans and animals, but can harm 336 
beneficial insects such as bees and aquatic organisms if used improperly (Bond et al., 2014). Pyrethrins are used in 337 
both agricultural and household pest control, often as a natural alternative to synthetic insecticides (Hodoșan et al., 338 
2023). 339 
 340 
Bacillus thuringiensis (Bt) 341 
Bacillus thuringiensis (Bt) is a spore-forming soil bacterium that has been widely used as a biopesticide for over 342 
60 years (Kumar et al., 2021) It produces proteins known as delta-endotoxins (the proteins Cry and Cyt), which, 343 
when ingested by insects, bind to specific receptors located on the midgut epithelial cells (Bravo et al., 2007; 344 
Schnepf et al., 1998). The proteins then assemble to create pores in the cell membrane, which disrupt it and cause 345 
insect death (Bravo et al., 2007; Schnepf et al., 1998). 346 
 347 
Bt is highly specific to target pests due to the receptor binding property of the Cry and Cyt proteins (Bravo et al., 348 
2007). For Cry1A toxins, at least four different binding proteins have been described in different lepidopteran 349 
insects (Jurat-Fuentes & Adang, 2004; Knight et al., 1994; Vadlamudi et al., 1995; Valaitis et al., 2001). The 350 
bacterium also produces vegetative insecticidal proteins (Vip) and secreted insecticidal protein (Sip) which are toxic 351 
to specific insect groups (Kumar et al., 2021). 352 
 353 
Bt is particularly effective against insects in the orders Lepidoptera (butterfly and moths), Coleoptera (Beetles), 354 
Diptera (flies and mosquitoes), and Hemiptera (true bugs) (Bravo et al., 2011; Palma et al., 2014; Sanahuja et al., 355 
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2011). In addition, researchers report that Bt is efficient at controlling nematodes (Bel et al., 2022), and mites (Erban 356 
et al., 2009; Yu et al., 1997). Thus, Bt affects a broader range of organisms than SOEs. 357 
 358 
Researchers have raised concerns regarding Bt’s non-targeted effects on beneficial insects (Federici, 2003). This 359 
topic continues to be an area of scientific debate, and more data is needed (Naranjo, 2009). Most evidence shows 360 
that Bt insecticides are safe for non-target organisms, especially compared to chemical insecticides (Federici, 2003; 361 
Singh et al., 2019). However, there are reports of non-targeted deleterious effects on several groups of insects, 362 
especially when there is taxonomic affinity of the non-target organisms to the groups targeted by the Bt insecticide 363 
(Naranjo, 2009). 364 
 365 
For example, Nawrot-Esposito et al. (2020) demonstrated that Bt products, when used at concentrations that could 366 
be reached in the field upon spraying, impair the growth and developmental time of the non-target dipteran 367 
Drosophila melanogaster (common fruit fly) larvae. Similarly, Jneid et al. (2023) also demonstrated that Cry1A 368 
toxins disrupted physiological processes in Drosophila melanogaster. 369 
 370 
Other studies have evaluated the impacts of Bt on non-target organisms through the expression of Bt genes in 371 
genetically engineered crops. Dively et al. (2004) discovered that lepidopteran Danaus plexippus (monarch 372 
butterfly) larvae mortality increased after eating Bt corn pollen. When the monarch butterfly larvae were exposed to 373 
Bt pollen on milkweed, 23.7% fewer larvae reached adulthood. Although transgenic Bt crops are not eligible for 374 
organic certification, the impacts on non-target organisms illustrate the potential for Bt insecticides to have adverse 375 
effects on non-target organisms. 376 
 377 
Although one of the most widely used microbial insecticides, there have been reports of insect resistance to Bt. 378 
McGaughey (1985) reported that Plodia interpunctella (Indianmeal moth), a major lepidopteran stored grain pest, 379 
can develop resistance to Bt within a few generations. Resistance increased nearly 30-fold in two generations in a 380 
strain reared on a diet treated with Bt. After 15 generations, resistance was 100 times higher than the control level. 381 
Similarly, resistance alleles have increased substantially in Helicoverpa zea (corn earworm) as a result of field-382 
evolved resistance to a Bt transgenic crop (Tabashnik et al., 2008).3 Tabashnik et al., (2023) studied 25 years of 383 
global patterns of resistance to transgenic Bt crops in 24 pest species. Results revealed that the rapid evolution of 384 
practical resistance to Bt crops has reduced Bt efficacy in at least 11 pest species and 7 countries. 385 
 386 
Spinosad 387 
Spinosad is derived from the fermentation of the bacterium Saccharopolyspora spinosa. Spinosad targets the insect 388 
nervous system, causing excitation of the insect's neurons, leading to paralysis and death. Spinosad is effective 389 
against a variety of pests, including caterpillars, thrips, flies and leaf miners (Hertlein et al., 2011; Martelli et al., 390 
2022). Spinosad breaks down quickly in the environment and is considered safe for humans and most beneficial 391 
insects, though it can be toxic to bees if applied directly to flowering plants (Mayes et al., 2003; Miles et al., 2002). 392 
According to Christen et al. (2019), Spinosad application (0.05, 0.5, and 5 ng/bee) for three different exposure times 393 
(24, 48, 72 hours) induced transcriptional alterations in genes associated with energy production in honeybees. 394 
Tomé et al. (2015) discovered that Melipona quadrifasciata (a stingless bee native to southeastern Brazil) exhibited 395 
high oral susceptibility to spinosad with an LD50 of 12.07 ng/bee. These reports highlight the hazardous nature of 396 
spinosad to bee populations. 397 
 398 
Other Botanicals 399 
Other plant-derived compounds have also been used for insect control, including essential oils derived from thyme 400 
and eucalyptus (Khater, 2012), and garlic extracts (Allium sativum). Garlic extracts contain sulfur compounds such 401 
as allicin, which have insecticidal and fungicidal properties. Garlic acts as a natural repellent by producing strong 402 
odors that deter pests like aphids, mosquitoes (including the Asian tiger mosquito), slugs, and mealworm beetles 403 
(Dusi et al., 2022; Plata-rueda et al., 2017; Tedeschi et al., 2011). 404 
 405 
Plant pesticides are generally biodegraded by common soil microorganisms and have low persistence in the 406 
environment (Khater, 2012). 407 
 408 
Biological controls 409 
If properly applied, biological control agents can be effective against soft-bodied insect pests that are present in 410 
crops. Kundoo & Khan (2017) recommend that operators seek to identify infestations early while the pest population 411 
is still small, then release a corresponding beneficial insect predator. Many of these predators are in the family 412 
Coccinellidae, including ladybugs, which are effective predators against aphids, whiteflies, and mites. Biological 413 

 
3 An allele refers to a variant form of a gene. In the context of insect resistance to Bt, resistance alleles are genetic variations that confer the 
ability to survive exposure to Bt toxins, leading to an increase in their frequency within resistant populations over generations. 
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control agents are often paired with other pest control measures as part of an integrated pest management plan 414 
(Kundoo & Khan, 2017). 415 
 416 
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