Hydrogen Chloride

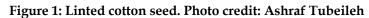
1)	Crop	DS			
1 2	Identification o	Identification of Petitioned Substance				
3 4	Chemical Names:	12	Trade Names:			
5	hydrogen chloride, HCl	13	none			
6		14				
7	Other Names:	15	CAS Numbers:			
8	anhydrous hydrochloric acid; chlorane;	16	7647-01-0			
9 10	chlorohydric acid; hydrogen chloride solution; muriatic acid.	17 18	Other Codes:			
10	munatic acid.	10	EC number: 231-595-7			
20		17				
21	Summary	of Pe	titioned Use			
22						
23			formation to the National Organic Standards Board			
24			loride, listed at 7 CFR 205.601(n), where it is allowed for			
25			ginally petitioned for use in 2002 (Wedel, 2002). It was			
26 27			added to the National List of Allowed and Prohibited , effective in 2006 (71 FR 53299). As part of the sunset			
27			2009, 2015, and in 2019 (NOSB, 2009a, 2015, 2019). In all			
28 29			y available solution for organic farmers needing to delint			
30			r 2019, a motion to remove hydrogen chloride from the			
31	National List was unanimously rejected by all 13 a					
32						
33			of relisting hydrogen chloride as essential and asserted			
34			e U.S. organic cotton industry. Allowing the limited use of			
35			economic and environmental benefits by supporting			
36			ng associated impacts of heavy pesticide use on			
37 38			ecialized research to support alternatives to hydrogen			
30 39	chonde, a causic and potentially harmin	1 mate	erial, were emphasized, and is supported by the NOSB.			
40	This technical report focuses on updates to the available	ailabil	ity of alternative substances and practices for cotton			
41	seed delinting.					
42	0					
43	Ва	ckgro	ound			
44		0				
45	At cotton (Gossynium hirsutum) maturity, the outer	rmost	layer of the cotton seed coat has two types of fibers:			
46			Linters are darker, shorter, more nearly cylindrical,			
47	and have thicker walls and narrower central canal					
48			w) but some fuzz (short fibers or linters) stays. The			
49			seed, thus creating conditions conducive for fungal			
50	infection (Afzal et al., 2020). In addition, the fuzz of					
51	planting (Delouche, 1986). ¹ Delinting is a necessar	y pro	cess to improve storage and flowability of cotton			
52	seeds through equipment (Holt et al., 2017).					

53

54 The delinting process has only a very slight effect on the germination rate. Ryavalad et al. (2009) observed 55 that the germination rate of fuzzy seeds after nine months of storage was 66.3% as opposed to 68.3% for

56 acid delinted seed. McMichael et al. (2004) noticed that mechanical and acid delinting resulted in the same of

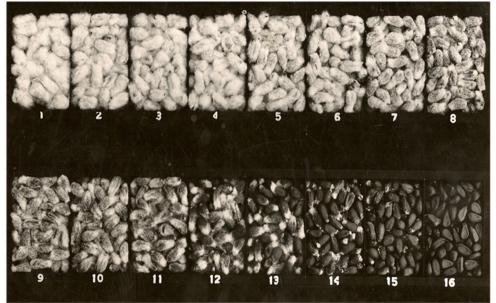
¹ Grading is a process used by seed companies or storage facilities to classify seed based on physical characteristics such as size, shape, moisture content, color, texture, foreign matter, etc. This process ensures seed consistency.


57 germination rate and yield. Similarly, earlier research has shown that delinting does not necessarily affect

yields (Wilkes & Corley, 1968). An up-to-date account of cotton seed germination requirements is 58

59 adequately provided in Maeda et al. (2021). The importance of the delinting process is thoroughly

discussed by Atique-ur-Rehman et al. (2020). Historically, cotton seed has been delinted through chemical 60


- or mechanical approaches (Delouche, 1986). 61
- 62 63

- 64 65

66 Figure 2: Variable degrees of cotton seed delinting. Fully delinted seed (16) is likely achieved using acid delinting (Anonymous author, source: https://file.scirp.org/Html/13-2600348_20046.htm). 67

69						
70		ed process: hydrogen chloride				
71	The gas-acid or dry acid delinting method uses hydrogen chloride (anhydrous hydrochloric acid) to					
72	degrade the linters, which are then separated from the seed (Ardashev, 1933). This method is the most					
73		common method in Texas (Hopper & Hinton, 1979). It is most suitable when the cottonseed moisture				
74	content is <9%, as hydrogen chloride is a gas with a high affinity for water, and its penetration through the					
75		at into the embryo increases with higher seed moisture content (Delouche, 1986). In addition, high				
76		ity accelerates equipment corrosion, making the gas-acid method less adapted to humid regions				
77	(Delou	che, 1986).				
78						
79	The pro	ocess is as follows (Delouche, 1986):				
80 81	1)	Seeds with 5-7% moisture content are placed in a rotating drum at 60-70°C before injection of the gas-acid at a concentration of 0.5-2.0% of seed weight.				
82	2)	Seeds remain in the drum between 5 and 20 minutes, depending on the temperature, seed moisture				
83	,	content, concentration of the gas-acid and variety.				
84	3)	The degraded linters are removed by passing the seed through a perforated reel to allow the drop				
85	,	of the linters.				
86 87	4)	The acid is neutralized using ammonia, resulting in flowable seed ready for planting or storage.				
88	Gas-aci	d delinting uses less acid and is generally less expensive than another process, the wet acid method				
89		che, 1986). This method is discussed below, in <i>Evaluation Question</i> #11. However, the gas-acid				
90		l requires sophisticated equipment, close monitoring, and stringent control of the various operations				
91		ctive delinting without injury to the seed. Seed injury from the process can cause a drastic drop in				
92		ation and vigor. Seed injury can occur due to excessive temperature, gas-acid concentration,				
93	0	n duration, or too-long exposure to ammonia during neutralization. Poorly controlled gas-acid				
94		ng can cause a drastic reduction in germination and vigor (Delouche, 1986).				
95						
96		Evaluation Questions for Substances to be used in Organic Crop or Livestock Production				
		Lyanation Outstions for Substances to be used in Organic Crop of Envestors i roudenon				
07		Evaluation Questions for Substances to be used in Organic Crop of Elvestock Froduction				
97 98	Evalua					
98		tion Question #11: Describe all natural (non-synthetic) substances or products which may be				
98 99	<u>used ir</u>	tion Question #11: Describe all natural (non-synthetic) substances or products which may be a place of a petitioned substance (7 U.S.C. § 6517 (c) (1) (A) (ii)). Provide a list of allowed				
98 99 100	<u>used ir</u>	tion Question #11: Describe all natural (non-synthetic) substances or products which may be				
98 99 100 101	<u>used ir</u> substa	tion Question #11: Describe all natural (non-synthetic) substances or products which may be a place of a petitioned substance (7 U.S.C. § 6517 (c) (1) (A) (ii)). Provide a list of allowed nces that may be used in place of the petitioned substance (7 U.S.C. § 6518 (m) (6)).				
98 99 100 101 102	<u>used ir</u> <u>substa</u> Nonsyn	tion Question #11: Describe all natural (non-synthetic) substances or products which may be a place of a petitioned substance (7 U.S.C. § 6517 (c) (1) (A) (ii)). Provide a list of allowed nces that may be used in place of the petitioned substance (7 U.S.C. § 6518 (m) (6)).				
98 99 100 101 102 103	<u>used ir</u> <u>substa</u> <i>Nonsyn</i> Given f	tion Question #11: Describe all natural (non-synthetic) substances or products which may be a place of a petitioned substance (7 U.S.C. § 6517 (c) (1) (A) (ii)). Provide a list of allowed nces that may be used in place of the petitioned substance (7 U.S.C. § 6518 (m) (6)).				
98 99 100 101 102 103 104	<u>used in</u> <u>substan</u> <i>Nonsyn</i> Given t availab	tion Question #11: Describe all natural (non-synthetic) substances or products which may be a place of a petitioned substance (7 U.S.C. § 6517 (c) (1) (A) (ii)). Provide a list of allowed inces that may be used in place of the petitioned substance (7 U.S.C. § 6518 (m) (6)). In the the characteristic state of the petitioned for effective acid delinting, no non-synthetic substances are the extremely low pH (1.5-3) required for effective acid delinting. However, alternative allowed practices				
98 99 100 101 102 103 104 105	<u>used in</u> <u>substan</u> <i>Nonsyn</i> Given t availab	tion Question #11: Describe all natural (non-synthetic) substances or products which may be a place of a petitioned substance (7 U.S.C. § 6517 (c) (1) (A) (ii)). Provide a list of allowed nces that may be used in place of the petitioned substance (7 U.S.C. § 6518 (m) (6)).				
98 99 100 101 102 103 104 105 106	<u>used ir</u> <u>substan</u> Nonsyn Given t availab are ava	tion Question #11: Describe all natural (non-synthetic) substances or products which may be a place of a petitioned substance (7 U.S.C. § 6517 (c) (1) (A) (ii)). Provide a list of allowed nees that may be used in place of the petitioned substance (7 U.S.C. § 6518 (m) (6)). <i>Thetic Alternatives for Delinting</i> the extremely low pH (1.5-3) required for effective acid delinting, no non-synthetic substances are ble as alternatives to synthetic acids for cotton seed delinting. However, alternative allowed practices ilable and detailed in the answer to <i>Evaluation Question</i> #12 (below).				
98 99 100 101 102 103 104 105 106 107	used ir substan Nonsyn Given t availab are ava Synthet	tion Question #11: Describe all natural (non-synthetic) substances or products which may be a place of a petitioned substance (7 U.S.C. § 6517 (c) (1) (A) (ii)). Provide a list of allowed inces that may be used in place of the petitioned substance (7 U.S.C. § 6518 (m) (6)). Extentic Alternatives for Delinting the extremely low pH (1.5-3) required for effective acid delinting, no non-synthetic substances are ble as alternatives to synthetic acids for cotton seed delinting. However, alternative allowed practices ilable and detailed in the answer to <i>Evaluation Question #12</i> (below).				
98 99 100 101 102 103 104 105 106 107 108	used ir substan Nonsyn Given t availab are ava Synthet Aside f	tion Question #11: Describe all natural (non-synthetic) substances or products which may be a place of a petitioned substance (7 U.S.C. § 6517 (c) (1) (A) (ii)). Provide a list of allowed inces that may be used in place of the petitioned substance (7 U.S.C. § 6518 (m) (6)). In the the calternatives for Delinting the extremely low pH (1.5-3) required for effective acid delinting, no non-synthetic substances are the as alternatives to synthetic acids for cotton seed delinting. However, alternative allowed practices ilable and detailed in the answer to Evaluation Question #12 (below). <i>ic Alternatives for Delinting</i> from hydrogen chloride, no other synthetics on the National List are allowed for cotton delinting.				
98 99 100 101 102 103 104 105 106 107 108 109	used ir substan Nonsyn Given f availab are ava Synthet Aside f Sulfurio	tion Question #11: Describe all natural (non-synthetic) substances or products which may be a place of a petitioned substance (7 U.S.C. § 6517 (c) (1) (A) (ii)). Provide a list of allowed inces that may be used in place of the petitioned substance (7 U.S.C. § 6518 (m) (6)). In the the calternatives for Delinting the extremely low pH (1.5-3) required for effective acid delinting, no non-synthetic substances are le as alternatives to synthetic acids for cotton seed delinting. However, alternative allowed practices ilable and detailed in the answer to <i>Evaluation Question</i> #12 (below). <i>ic Alternatives for Delinting</i> from hydrogen chloride, no other synthetics on the National List are allowed for cotton delinting. c acid (H ₂ SO ₄) is the most common material used for delinting (Afzal et al., 2020). However, sulfuric				
98 99 100 101 102 103 104 105 106 107 108 109 110	used ir substan Nonsyn Given t availab are ava Synthet Aside f Sulfuria acid is	tion Question #11: Describe all natural (non-synthetic) substances or products which may be a place of a petitioned substance (7 U.S.C. § 6517 (c) (1) (A) (ii)). Provide a list of allowed inces that may be used in place of the petitioned substance (7 U.S.C. § 6518 (m) (6)). Ithetic Alternatives for Delinting the extremely low pH (1.5-3) required for effective acid delinting, no non-synthetic substances are le as alternatives to synthetic acids for cotton seed delinting. However, alternative allowed practices ilable and detailed in the answer to <i>Evaluation Question #12</i> (below). <i>ic Alternatives for Delinting</i> from hydrogen chloride, no other synthetics on the National List are allowed for cotton delinting. c acid (H ₂ SO ₄) is the most common material used for delinting (Afzal et al., 2020). However, sulfuric not currently an allowed material for delinting organic cotton. The NOP allows this material to be				
98 99 100 101 102 103 104 105 106 107 108 109 110 111	used ir substan	tion Question #11: Describe all natural (non-synthetic) substances or products which may be a place of a petitioned substance (7 U.S.C. § 6517 (c) (1) (A) (ii)). Provide a list of allowed inces that may be used in place of the petitioned substance (7 U.S.C. § 6518 (m) (6)). <i>Thetic Alternatives for Delinting</i> the extremely low pH (1.5-3) required for effective acid delinting, no non-synthetic substances are le as alternatives to synthetic acids for cotton seed delinting. However, alternative allowed practices ilable and detailed in the answer to <i>Evaluation Question</i> #12 (below). <i>ic Alternatives for Delinting</i> from hydrogen chloride, no other synthetics on the National List are allowed for cotton delinting. c acid (H ₂ SO ₄) is the most common material used for delinting (Afzal et al., 2020). However, sulfuric not currently an allowed material for delinting organic cotton. The NOP allows this material to be adjust the pH of liquid fish or liquid squid organic fertilizer products, provided that the amount				
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112	used ir substan	tion Question #11: Describe all natural (non-synthetic) substances or products which may be a place of a petitioned substance (7 U.S.C. § 6517 (c) (1) (A) (ii)). Provide a list of allowed inces that may be used in place of the petitioned substance (7 U.S.C. § 6518 (m) (6)). Ithetic Alternatives for Delinting the extremely low pH (1.5-3) required for effective acid delinting, no non-synthetic substances are le as alternatives to synthetic acids for cotton seed delinting. However, alternative allowed practices ilable and detailed in the answer to <i>Evaluation Question #12</i> (below). <i>ic Alternatives for Delinting</i> from hydrogen chloride, no other synthetics on the National List are allowed for cotton delinting. c acid (H ₂ SO ₄) is the most common material used for delinting (Afzal et al., 2020). However, sulfuric not currently an allowed material for delinting organic cotton. The NOP allows this material to be				
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113	used ir substan	tion Question #11: Describe all natural (non-synthetic) substances or products which may be place of a petitioned substance (7 U.S.C. § 6517 (c) (1) (A) (ii)). Provide a list of allowed nees that may be used in place of the petitioned substance (7 U.S.C. § 6518 (m) (6)). thetic Alternatives for Delinting the extremely low pH (1.5-3) required for effective acid delinting, no non-synthetic substances are ble as alternatives to synthetic acids for cotton seed delinting. However, alternative allowed practices ilable and detailed in the answer to <i>Evaluation Question</i> #12 (below). <i>ic Alternatives for Delinting</i> from hydrogen chloride, no other synthetics on the National List are allowed for cotton delinting. c acid (H ₂ SO ₄) is the most common material used for delinting (Afzal et al., 2020). However, sulfuric not currently an allowed material for delinting organic cotton. The NOP allows this material to be adjust the pH of liquid fish or liquid squid organic fertilizer products, provided that the amount bes not exceed the minimum needed to lower the pH to 3.5 (7 CFR 205.605(j)(8) & (10)).				
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112	used ir substan Nonsyn Given f availab are ava Synthet Aside f Sulfuria acid is used to used to used do	tion Question #11: Describe all natural (non-synthetic) substances or products which may be place of a petitioned substance (7 U.S.C. § 6517 (c) (1) (A) (ii)). Provide a list of allowed nees that may be used in place of the petitioned substance (7 U.S.C. § 6518 (m) (6)). thetic Alternatives for Delinting the extremely low pH (1.5-3) required for effective acid delinting, no non-synthetic substances are be as alternatives to synthetic acids for cotton seed delinting. However, alternative allowed practices ilable and detailed in the answer to <i>Evaluation Question #12</i> (below). <i>ic Alternatives for Delinting</i> from hydrogen chloride, no other synthetics on the National List are allowed for cotton delinting. c acid (H ₂ SO ₄) is the most common material used for delinting (Afzal et al., 2020). However, sulfuric not currently an allowed material for delinting organic cotton. The NOP allows this material to be adjust the pH of liquid fish or liquid squid organic fertilizer products, provided that the amount bes not exceed the minimum needed to lower the pH to 3.5 (7 CFR 205.605(j)(8) & (10)).				
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114	used ir substan Nonsyn Given f availab are ava Synthet Aside f Sulfuria acid is used to used to used do	tion Question #11: Describe all natural (non-synthetic) substances or products which may be place of a petitioned substance (7 U.S.C. § 6517 (c) (1) (A) (ii)). Provide a list of allowed nees that may be used in place of the petitioned substance (7 U.S.C. § 6518 (m) (6)). thetic Alternatives for Delinting the extremely low pH (1.5-3) required for effective acid delinting, no non-synthetic substances are ble as alternatives to synthetic acids for cotton seed delinting. However, alternative allowed practices ilable and detailed in the answer to <i>Evaluation Question</i> #12 (below). <i>ic Alternatives for Delinting</i> from hydrogen chloride, no other synthetics on the National List are allowed for cotton delinting. c acid (H ₂ SO ₄) is the most common material used for delinting (Afzal et al., 2020). However, sulfuric not currently an allowed material for delinting organic cotton. The NOP allows this material to be adjust the pH of liquid fish or liquid squid organic fertilizer products, provided that the amount bes not exceed the minimum needed to lower the pH to 3.5 (7 CFR 205.605(j)(8) & (10)).				
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115	used ir substan Nonsyn Given t availab are ava Synthet Aside f Sulfuria acid is used to used do In addi acids su	tion Question #11: Describe all natural (non-synthetic) substances or products which may be place of a petitioned substance (7 U.S.C. § 6517 (c) (1) (A) (ii)). Provide a list of allowed nees that may be used in place of the petitioned substance (7 U.S.C. § 6518 (m) (6)). thetic Alternatives for Delinting the extremely low pH (1.5-3) required for effective acid delinting, no non-synthetic substances are be as alternatives to synthetic acids for cotton seed delinting. However, alternative allowed practices ilable and detailed in the answer to <i>Evaluation Question #12</i> (below). <i>ic Alternatives for Delinting</i> from hydrogen chloride, no other synthetics on the National List are allowed for cotton delinting. c acid (H ₂ SO ₄) is the most common material used for delinting (Afzal et al., 2020). However, sulfuric not currently an allowed material for delinting organic cotton. The NOP allows this material to be adjust the pH of liquid fish or liquid squid organic fertilizer products, provided that the amount bes not exceed the minimum needed to lower the pH to 3.5 (7 CFR 205.605(j)(8) & (10)).				
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116	used ir substan Nonsyn Given f availab are ava Synthet Aside f Sulfuria acid is used to used do In addi acids su	tion Question #11: Describe all natural (non-synthetic) substances or products which may be place of a petitioned substance (7 U.S.C. § 6517 (c) (1) (A) (ii)). Provide a list of allowed nees that may be used in place of the petitioned substance (7 U.S.C. § 6518 (m) (6)). thetic Alternatives for Delinting the extremely low pH (1.5-3) required for effective acid delinting, no non-synthetic substances are le as alternatives to synthetic acids for cotton seed delinting. However, alternative allowed practices ilable and detailed in the answer to <i>Evaluation Question</i> #12 (below). <i>ic Alternatives for Delinting</i> from hydrogen chloride, no other synthetics on the National List are allowed for cotton delinting. c acid (H ₂ SO ₄) is the most common material used for delinting (Afzal et al., 2020). However, sulfuric not currently an allowed material for delinting organic cotton. The NOP allows this material to be adjust the pH of liquid fish or liquid squid organic fertilizer products, provided that the amount bes not exceed the minimum needed to lower the pH to 3.5 (7 CFR 205.605(j)(8) & (10)).				
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117	used ir substan Nonsyn Given f availab are ava Synthet Aside f Sulfuria acid is s used to used do In addi acids su Non-all This ma	tion Question #11: Describe all natural (non-synthetic) substances or products which may be a place of a petitioned substance (7 U.S.C. § 6517 (c) (1) (A) (ii)). Provide a list of allowed nees that may be used in place of the petitioned substance (7 U.S.C. § 6518 (m) (6)). thetic Alternatives for Delinting the extremely low pH (1.5-3) required for effective acid delinting, no non-synthetic substances are le as alternatives to synthetic acids for cotton seed delinting. However, alternative allowed practices ilable and detailed in the answer to <i>Evaluation Question</i> #12 (below). <i>ic Alternatives for Delinting</i> from hydrogen chloride, no other synthetics on the National List are allowed for cotton delinting. a c acid (H ₂ SO ₄) is the most common material used for delinting (Afzal et al., 2020). However, sulfuric not currently an allowed material for delinting organic cotton. The NOP allows this material to be a djust the pH of liquid fish or liquid squid organic fertilizer products, provided that the amount bes not exceed the minimum needed to lower the pH to 3.5 (7 CFR 205.605(j)(8) & (10)). tion to sulfuric acid, other synthetic substances used in conventional cotton seed delinting include uch as anhydrous hydrochloric acid (gas) and alkanesulfonic acid (Borst & Zack, 2015). <i>owed process: wet-acid method (sulfuric acid)</i>				
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118	used ir substan Nonsyn Given f availab are ava Synthet Aside f Sulfuria acid is s used to used do In addi acids su Non-all This ma	tion Question #11: Describe all natural (non-synthetic) substances or products which may be a place of a petitioned substance (7 U.S.C. § 6517 (c) (1) (A) (ii)). Provide a list of allowed nees that may be used in place of the petitioned substance (7 U.S.C. § 6518 (m) (6)). thetic Alternatives for Delinting the extremely low pH (1.5-3) required for effective acid delinting, no non-synthetic substances are the as alternatives to synthetic acids for cotton seed delinting. However, alternative allowed practices ilable and detailed in the answer to <i>Evaluation Question #12</i> (below). <i>ic Alternatives for Delinting</i> from hydrogen chloride, no other synthetics on the National List are allowed for cotton delinting. c acid (H ₂ SO ₄) is the most common material used for delinting (Afzal et al., 2020). However, sulfuric not currently an allowed material for delinting organic cotton. The NOP allows this material to be adjust the pH of liquid fish or liquid squid organic fertilizer products, provided that the amount be not exceed the minimum needed to lower the pH to 3.5 (7 CFR 205.605(j)(8) & (10)). tion to sulfuric acid, other synthetic substances used in conventional cotton seed delinting include uch as anhydrous hydrochloric acid (gas) and alkanesulfonic acid (Borst & Zack, 2015). <i>owed process: wet-acid method (sulfuric acid)</i> ethod uses sulfuric acid, which is not allowed in organic production for cotton delinting. As detailed				
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119	used ir substan Nonsyn Given t availab are ava Synthet Aside f Sulfuria acid is used to used do In addi acids su Non-all This ma	tion Question #11: Describe all natural (non-synthetic) substances or products which may be a place of a petitioned substance (7 U.S.C. § 6517 (c) (1) (A) (ii)). Provide a list of allowed nees that may be used in place of the petitioned substance (7 U.S.C. § 6518 (m) (6)). thetic Alternatives for Delinting the extremely low pH (1.5-3) required for effective acid delinting, no non-synthetic substances are the as alternatives to synthetic acids for cotton seed delinting. However, alternative allowed practices ilable and detailed in the answer to <i>Evaluation Question #12</i> (below). <i>ic Alternatives for Delinting</i> from hydrogen chloride, no other synthetics on the National List are allowed for cotton delinting. c acid (H ₂ SO ₄) is the most common material used for delinting (Afzal et al., 2020). However, sulfuric not currently an allowed material for delinting organic cotton. The NOP allows this material to be adjust the pH of liquid fish or liquid squid organic fertilizer products, provided that the amount be not exceed the minimum needed to lower the pH to 3.5 (7 CFR 205.605(j)(8) & (10)). tion to sulfuric acid, other synthetic substances used in conventional cotton seed delinting include uch as anhydrous hydrochloric acid (gas) and alkanesulfonic acid (Borst & Zack, 2015). <i>owed process: wet-acid method (sulfuric acid)</i> ethod uses sulfuric acid, which is not allowed in organic production for cotton delinting. As detailed				
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120	used ir substan Nonsyn Given t availab are ava Synthet Aside f Sulfuria acid is used to used do In addi acids su Non-all This ma	tion Question #11: Describe all natural (non-synthetic) substances or products which may be to place of a petitioned substance (7 U.S.C. § 6517 (c) (1) (A) (ii)). Provide a list of allowed inces that may be used in place of the petitioned substance (7 U.S.C. § 6518 (m) (6)). The extremely low pH (1.5-3) required for effective acid delinting, no non-synthetic substances are le as alternatives to synthetic acids for cotton seed delinting, However, alternative allowed practices ilable and detailed in the answer to <i>Evaluation Question</i> #12 (below). <i>ic Alternatives for Delinting</i> rom hydrogen chloride, no other synthetics on the National List are allowed for cotton delinting. to c acid (H ₂ SO ₄) is the most common material used for delinting (Afzal et al., 2020). However, sulfuric not currently an allowed material for delinting organic cotton. The NOP allows this material to be adjust the pH of liquid fish or liquid squid organic fertilizer products, provided that the amount bes not exceed the minimum needed to lower the pH to 3.5 (7 CFR 205.605(j)(8) & (10)). tion to sulfuric acid, other synthetic substances used in conventional cotton seed delinting include uch as anhydrous hydrochloric acid (gas) and alkanesulfonic acid (Borst & Zack, 2015). <i>owed process: wet-acid method (sulfuric acid)</i> ethod uses sulfuric acid, which is not allowed in organic production for cotton delinting. As detailed etha et al. (2021), cotton seed producers can use concentrated or diluted sulfuric acid.				

122 123 124	1)	Gin-run seeds are wetted with concentrated (93-98%) sulfuric acid at a dose of 80-140 mL/kg seeds with linters, with an acid/seed turning time of 7-8 min (Biradarpatil & Macha, 2009; Tostes et al., 2022).
125	2)	Seeds are washed with water for 2 min. After washing, seed is placed in water with a ratio of 1:10
126 127 128 129 130	3)	for removal of floaters. Seeds are immersed in a neutralizing solution for 10–15 min using one of the following basic compound: sodium hydroxide (NaOH), sodium carbonate (Na ₂ CO ₃), calcium hydroxide [Ca(OH) ₂] (Tostes et al., 2022), calcium chloride (CaCl ₂) (Atique-ur-Rehman et al., 2020) or different types of lime (Lima et al., 2023).
130 131 132	4)	Seeds are dried before moving to the cleaning, grading, treating, and packaging line.
132	In the	dilute wet-acid method:
133	1)	Dilute (~10%) sulfuric acid is used to wet the linters.
134	1) 2)	The wet seeds are then dewatered by centrifugation and dried with heated air to evaporate water,
135	(ک	increasing the concentration of the acid.
130	2)	
137	3)	The degraded (hydrolyzed) linters are removed by frictional forces in a rotating buffer-drum.
138	4)	Residual acidity is neutralized with ammonia or by adding lime in the seed treatment process
139		(Delouche, 1986).
140	Thoad	vantages of the dilute wet-acid delinting process are:
141	The au	Reduction in the quantity of sulfuric acid required (due to lower quantity used and recovery
142	•	during dewatering).
144	•	Elimination of the effluent produced in wet-acid delinting.
145	•	Production of by-products (hydrolyzed linters removed during the buffer-drum step) that have
146		potential value in ethanol production and as an animal feed additive (Delouche, 1986).
147 148	Non al	lowed process: alkanesulfonic acid
140		esulfonic acid is another synthetic material that has been recently reported for cotton delinting. Like
149		
150		c acid, this method is not allowed in organic production. BASF applied for a patent for this material (Borst & Zack, 2015). This method comprises:
151	1)	Applying alkanesulfonic acid to surfaces of linted cotton seeds, and optionally heating the linted
152	1)	cotton seeds. A surfactant and water are added to the acid.
155	2)	Applying mechanical force to the surfaces of the linted cotton seeds.
154	(ک	Apprying mechanical force to the surfaces of the infled cotton seeds.
155	No ovr	perimental evidence of the use or efficacy of this material is available in scientific literature.
150	-	elinting, however, can easily cause damage to seed viability with improper acid exposure time. It
157		o been reported to reduce seed shelf life and is a relatively expensive process.
150	1105 015	been reported to reduce seed shell life and is a relatively expensive process.
160	Evalua	tion Question #12: Describe any alternative practices that would make the use of the petitioned
161		nce unnecessary (7 U.S.C. § 6518 (m) (6)).
162		cally, three different methods have been used to delint cotton seeds: mechanical, flaming and
163		al (Delouche, 1986). Mechanical and flaming methods were more common before the development
164		delinting methods (Bourland, 2019). Earlier researchers found that although fuzzy seeds tended to
165		e more slowly, little difference in stands or yields existed between fuzzy, acid-delinted, and
166	•	nically delinted seed (Wilkes & Corley, 1968).
167		y , , , , , , , , , , , , , , , , , , ,
168	Mechar	iical delinting
169		nical delinting is another method to minimize the amount of lint on the seed. In the mechanical
170		s, physical abrasion removes the fuzz from the surface of seed (Holt et al., 2017). This method
171		es effort and time but it preserves the seed from chemical injuries (Armijo et al., 2006).
172	1	
173	Mecha	nical delinting can reduce the lint amount down to 1.5% (weight/weight) (Olivier et al., 2006). The
174		l weight/weight of lint is not provided. The duration of mechanical delinting can affect cottonseed
175		. Hopper et al. (2003) reported that mechanical delinting for 10 minutes was generally equal to or

176 superior to 20- and 60-minute delinting times. The USDA cotton research group in Texas has successfully

- built a commercial scale mechanical delinter. However, up to the date of writing this report, there has beenno industrial partner ready to manufacture it (Greg Holt, personal communication). Seed handling and
- 176 no incustrial partier ready to manufacture it (Greg Floit, personal communication). Seed handling and planting flowability of mechanically delinted seed can be further improved by seed coating, which can be
- done using natural or synthetic compounds. This is a practice that has been used in preparing cottonseed
- 181 as animal feed. Natural compounds used include plant starches (maltodextrins) and gum Arabic (Afzal et
- al., 2020). Corn starch has been successfully used for cotton seed (Hopper et al., 2003).
- 183
- 184 In one study, researchers evaluated two cotton cultivars: one that involved mechanically-treated seed
- coated with gelatinized corn starch (called EasiFlo), versus another that was delinted with an undisclosed
- 186 acid (Olivier et al., 2006). The mechanical delinting process reduced the residual linters on the seed to about
- 187 1.5% by weight. Three seed-vigor tests (warm germination test, cool germination test, and cool warm vigor
- index) resulted in similar results for both seed treatments. Moreover, three commercial-scale field
 experiments showed that lint yield was not statistically different between the two treatments (Olivier et al.,
- 190 2006).
- 191
- 192 *Flame delinting*
- 193 Flame delinting or zipper delinting is a process used by seed processing facilities on mechanically delinted
- seed which are dropped through an intense flame to singe or burn off loose linters. Flowability of the
- 195 cotton seed is substantially improved, but not sufficiently for precision cleaning and conditioning methods
- 196 which separate despined cockleburs and immature, low density seeds (Delouche, 1986). The seeds exposed
- 197 to flaming need to be cooled down quickly to avoid damage to the embryo that might affect germinability
- 198 and vigor (Delouche, 1986).
- 199

200 *Chemical (acid) delinting*

- Acid delinting was developed in response to the drawbacks of mechanical delinting. Mechanical processes
- damaged the seed physically or by the heat generated from repeated friction with the seed, therefore
- weakening or killing the embryo (Delouche, 1986). In addition, mechanical delinting alone was not very
- efficient at removing the linters off the seed (Delouche, 1986). Acid delinting also has the added benefit of
- reducing microbial contamination and seed-borne pathogens (Chohan et al., 2020; Delouche, 1986). As a
- result, most cotton planting seed in the U.S. are acid delinted using either hydrochloric acid (dry acid
- 207 method) or dilute sulfuric acid (wet acid method) (Pilon et al., 2016).
- 208
- 209 Breeding fuzzless seed
- 210 A fuzzless upland cotton mutant (9023 n_4^t) was developed from the cultivar 'SC 9023' through chemical
- 211 mutagenesis by the Texas USDA cotton research group and Texas Tech University in Lubbock (Bechere et
- al., 2012). This mutant strain gins faster and with less energy when compared to other conventional and
- transgenic cultivars (Bechere et al., 2011). Early breeding efforts have continued to show that another
- 214 fuzzless genotype is possible through identification of genes controlling fuzz fiber production (Erpelding,
- 215 2016b). Until 2016, four fuzzless genotypes have been identified in the USDA *Gossypium arboretum*
- collection, which would suggest the presence of multiple genes for the fuzzless trait in this germplasm
- collection (Erpelding, 2016a). These genotypes could be potential breeding candidates to develop fuzzless
- cotton cultivars that would remove or reduce the need for cottonseed delinting.
- 219 220

221

230

Focus Questions Requested by the NOSB

- Focus Question #1. What new alternative substances or practices, if any, have become available since
 the last limited scope report in 2014? Are there any updates regarding the mechanical cottonseed
 delinter made by the USDA and referenced in the 2014 report on hydrogen chloride?
- 225 Researchers at the USDA-ARS Cotton Production and Processing Research Unit in Lubbock, Texas,
- describe construction of a prototype small-scale benchtop mechanical cotton seed delinter (Holt et al.,
- 227 2017). The researchers evaluated different drum linings and different roller brush combinations for
- 228 "scrubbing" lint from the cotton seed. In addition, two processing times (five and ten minutes) were
- 229 evaluated. Researchers measured the following parameters:
 - lint loss (i.e., residual lint remaining on the seed after processing)

- germination
 - visible mechanical damage of the seed
- visual observations of durability
- 234

232

The researchers found that an alternating brush pattern of half nylon and half steel wire bristle brushes is the best drum material using either one or two roller brushes (Holt et al., 2017). The best processing time in terms of the lint loss values was ten minutes. Lint loss values of the seed with one or two roller brushes at ten minutes were 0.95% and 0.88%, respectively. Germination rates for seed delinted using this system at five and ten min were not statistically different (89.3% and 88.4%, respectively). The brush material used (42N42W) appeared to be the most durable and was one of the easiest materials evaluated to clean out between samples (Holt et al., 2017).

242

Based on the bench-top prototype detailed in (Holt et al., 2017), the group built an 8-ft commercial scale

- prototype that could delint approximately 1000 lb./hour of fuzzy upland cottonseed (Figure 3, Figure 4)
 (Greg Holt, personal communication). The delinter will be tested at a commercial cotton gin in New
- 246 Mexico during the 2023-2024 ginning season. To complement the mechanical delinter, a cottonseed
- 246 Mexico during the 2023-2024 girling season. To complement the mechanical definiter, a cononseed 247 preconditioning system was also developed to handle several tons of seed per hour. The preconditioning
- system is designed to remove 4 to 6% of residual lint from fuzzy upland cotton prior to the mechanical
- 248 system is designed to remove 4 to 6% of residual lint from fuzzy upland cotton prior to the mechanical 240 delinter to impress the processing throughout (Creat Holt, personal communication). Preliminary test
- delinter to improve the processing throughput (Greg Holt, personal communication). Preliminary tests
- have shown that lint percentage dropped from 12.4% in initial fuzzy seed to 8.4% with two passes in the
- delinter (Holt et al., 2022). A larger version of the 8-ft mechanical delinter could be developed if a
 manufacturing company decides to adopt it. However, as of the development of this report, no such
- manufacturing company decides to adopt it. However, as of the development of this report, no sucharrangements are planned (Greg Holt, personal communication).
- 255 254
- 255 Other techniques to improve cotton seed germination
- 256 Seed plasma treatment is a new, non-chemical approach to sanitize seeds and protect against fungi and
- bacteria (de Groot et al., 2018). Plasma is formed by an electric discharge in a gas. In the case of an air
- 258 plasma it consists of ions, energetic electrons, neutral species, reactive oxygen species and reactive nitrogen
- 259 species, and produces electromagnetic radiation such as UV. Cold plasma treatment of cotton seeds
- significantly improved water absorption and germination parameters, including the four-day warm-
- 261 germination and metabolic-chilling tests, and seed imbibition. This method could be promising in
- 262 providing protection during storage to conserve or improve germination of seed delinted mechanically or
- using other organically-approved methods (de Groot et al., 2018).
- 264

Figure 3: Mechanical delinter developed by USDA-ARS in Lubbock, Texas. Photo credit: Greg Holt.

267 268

Figure 4: Lint discharge end of the machine. Photo credit: Greg Holt.

269 270 271

272

275

276

277

Report Authorship

The following individuals were involved in research, data collection, writing, editing, and/or finalapproval of this report:

- Ashraf Tubeileh, Associate Professor, California Polytechnic State University
 - Doug Currier, Technical Director, OMRI
- Peter O. Bungum, Research and Education Manager, OMRI
- Amy Bradsher, Deputy Director, OMRI

278 279

280 All individuals are in compliance with Federal Acquisition Regulations (FAR) Subpart 3.11 – Preventing

281 Personal Conflicts of Interest for Contractor Employees Performing Acquisition Functions.

282

283	References
284	
285 286 287 288	Afzal, I., Kamran, M., Ahmed Basra, S. M., Ullah Khan, S. H., Mahmood, A., Farooq, M., & Tan, D. K. Y. (2020). Harvesting and post-harvest management approaches for preserving cottonseed quality. <i>Industrial Crops and Products</i> , 155, 112842. <u>https://doi.org/10.1016/j.indcrop.2020.112842</u>
289 290	Ardashev, B. T. (1933). Chemical Delinting of Cottonseed and Industrial Utilization of the Lint. <i>Industrial & Engineering Chemistry</i> , 25(5), 575–581. <u>https://doi.org/10.1021/ie50281a028</u>
291 292 293 294	Armijo, C. B., Holt, G. A., Baker, K. D., Hughs, S. E., Barnes, E. M., & Gillum, M. N. (2006). Harvesting and ginning a cotton with a fragile seed coat. <i>The Journal of Cotton Science</i> , 10, 311–318.
295 296 297 298	Atique-ur-Rehman, Kamran, M., & Afzal, I. (2020). Production and Processing of Quality Cotton Seed. In S. Ahmad & M. Hasanuzzaman (Eds.), Cotton Production and Uses: Agronomy, Crop Protection, and Postharvest Technologies (pp. 547–570). Springer. <u>https://doi.org/10.1007/978-981-15-1472-2_27</u>
299 300 301	Bechere, E., Boykin, J. C., & Meredith, W. R. (2011). Evaluation of Cotton Genotypes for Ginning Energy and Ginning Rate. 15(1).
302 303 304	Bechere, E., Turley, R. B., Auld, D. L., & Zeng, L. (2012). A new fuzzless seed locus in an upland cotton (<i>Gossypium hirsutum</i> L.) mutant. <i>American Journal of Plant Sciences</i> , 3(6), 20046. <u>https://doi.org/10.4236/ajps.2012.36096</u>
305 306 307	Biradarpatil, N. K., & Macha, S. (2009). Effect of dosages of sulphuric acid and duration of delinting on seed quality in desi cotton. <i>Karanataka J. Agric. Sci.</i> , 22(4), 896–897.
308 309 310	Borst, J. P., & Zack, K. L. (2015). <i>Method of delinting cotton seeds</i> (World Intellectual Property Organization Patent WO2015134496A1). <u>https://patents.google.com/patent/WO2015134496A1/en</u>
811 812 813	Bourland, F. M. (2019). Functional Characterization of Seed and Seedling Vigor in Cotton. <i>Journal of Cotton Science</i> , 23(2), 168–176. <u>https://doi.org/10.56454/FXQJ8103</u>
814 815 816 817	Chohan, S., Perveen, R., Abid, M., Tahir, M. N., & Sajid, M. (2020). Cotton Diseases and Their Management. In S. Ahmad & M. Hasanuzzaman (Eds.), <i>Cotton Production and Uses: Agronomy, Crop Protection, and Postharvest</i> <i>Technologies</i> (pp. 239–270). Springer. <u>https://doi.org/10.1007/978-981-15-1472-2_13</u>
818 819 820	de Groot, G. J. J. B., Hundt, A., Murphy, A. B., Bange, M. P., & Mai-Prochnow, A. (2018). Cold plasma treatment for cotton seed germination improvement. <i>Scientific Reports</i> , 8(1), Article 1. <u>https://doi.org/10.1038/s41598-018-32692-9</u>
321 322 323 324	Delouche, J. C. (1986). Harvest and Post-harvest factors affecting the quality of cotton planting seed and seed quality evaluation. In <i>Cotton Physiology</i> (pp. 483–518). The Cotton Foundation.
325 326 327	Erpelding, J. E. (2016a). Determination of the genetic inheritance of the ovule fuzzless trait in Gossypium arborium germplasm. <i>Journal of Plant Breeding and Genetics</i> , 4(1), 1–5.
328 329 330	Erpelding, J. E. (2016b). Inheritance of the ovule fuzzless trait for Gossypium arboreum germplasm line PI 529708. <i>International Journal of Plant Breeding and Genetics</i> , 11(1), 25–30. <u>https://doi.org/10.3923/ijpbg.2017.25.30</u>
331 332 333	Hock, C. W. (1947). Structure of Cotton Linters. <i>Textile Research Journal</i> , 17(8), 423–430. https://doi.org/10.1177/004051754701700803
334 335 336	Holt, G., Wanjura, J., Pelletier, M., & Wedegaertner, T. (2022, July 17). Commercial-size mechanical cottonseed delinter: Evaluation & results. ASABE Annual Meeting, Houston, Texas.
837 838 839	Holt, G., Wedegaertner, T., Wanjura, J., Pelletier, M., Delhom, C., & Duke, S. (2017). Development and Evaluation of a Novel Bench-Top Mechanical Cotton Seed Delinter for Cotton Breeders. <i>Journal of Cotton Science</i> , 21, 18–28. <u>https://doi.org/10.56454/JPPY1526</u>
340 341 342	Hopper, N. W., & Hinton, H. R. (1979). An Anhydrous Hydrochloric Acid Method for Delinting Small Samples of Cottonseed. <i>Journal of Seed Technology</i> , 4(1), 7–11.

343	
344 345 346	Hopper, N. W., Olivier, D. B., Becker, W. D., & Wedegaertner, T. C. (2003). Polymer coating effects on seed quality ratings of cotton. <i>World Cotton Research Conference</i> , 641–645.
347 348 349 350 351	Lima, J. M. E., Carvalho, E. R., Moraes, L. F. de S., Cossa, N. H. da S., Miquicene, F. V. C., & Gradela, Y. F. (2023). Deliniting and neutralizers residue effect on stored cotton seeds physiological quality determined by phenotyping image analysis. <i>Journal of Seed Science</i> , 45, e202345014. <u>https://doi.org/10.1590/2317- 1545v45267297</u>
352 353	Maeda, A. B., Wells, L. W., Sheehan, M. A., & Dever, J. K. (2021). Stories from the Greenhouse – A Brief on Cotton Seed Germination. <i>Plants</i> , 10(12), Article 12. <u>https://doi.org/10.3390/plants10122807</u>
354 355 356 357 358	McMichael, B. L., Burke, J. J., Hopper, N., & Wedegaertner, T. (2004, January 1). The influence of various delinting and priming treatments on cotton seedling emergence, development and yield. National Cotton Council Beltwide Cotton Conference, San Antonio, Texas. <u>https://www.ars.usda.gov/research/publications/publication/?seqNo115=161345</u>
359 360 361 362 363 364	NOSB. (2009a). Formal recomendation by the National Organic Standards Board (NOSB) to the National Organic Program (NOP): Hydrogen chloride sunset. National Organic Program. <u>https://www.ams.usda.gov/sites/default/files/media/NOP%20Final%20Sunset%20Rec%20Hydrogen%20C</u> <u>hloride.pdf</u>
365 366 367	NOSB. (2009b). NOSB meeting minutes & transcripts, 1992-2009. National Organic Program. https://www.ams.usda.gov/rules-regulations/organic/petitioned-substances/magnesium-carbonate
368 369	NOSB. (2015). Sunset 2016 review NOSB final review crop substances. National Organic Program. https://www.ams.usda.gov/sites/default/files/media/CS%202016%20Sunset%20Rvw%20Final%20Rec.pdf
370 371 372 373	NOSB. (2019). Formal recommendation. From: National Organic Standards Board (NOSB). To: The National Organic Program (NOP). Sunset reviews – Crops 2021. National Organic Program. <u>https://www.ams.usda.gov/sites/default/files/media/CS2021SunsetReviews.pdf</u>
374 375 376	Olivier, D. B., Hopper, N., Boman, R. K., & Alexander, A. (2006). 2006: Field Evaluation of EasiFlo Coated Cotton Seed. 1798–1805.
377 378 379 280	Pilon, C., Bourland, F. M., & Bush, D. (2016). Chapter 3. Seeds and planting. In <i>Linking Physiology to Management</i> (pp. 67–84). The Cotton Foundation.
380 381 382 383	Ryavalad, S., Biradar Patil, N. K., Giraddi, R. S., & Katageri, I. S. (2009). Effect of acid delinting seed treatment and containers on storability of cotton hybrid. <i>Karnataka Journal of Agricultural Science</i> , 22(1), 56–60.
384 385 386 387	Tostes, D. P. V., dos Santos, H. O., Januário, J. P., Silva, J. X., dos Santos Guaraldo, M. M., Laurindo, G. M., & Pereira, W. V. S. (2022). Neutralization of Cotton Seeds After Chemical Delinting. <i>Water, Air, & Soil Pollution, 234</i> (1), 16. <u>https://doi.org/10.1007/s11270-022-06019-4</u>
388 388 389 390	Wedel, J. (2002). <i>Hydrogen chloride petition.pdf</i> . National Organic Program. https://www.ams.usda.gov/sites/default/files/media/Hydrogen%20Chloride%20Petition.pdf
390 391 392 393 394	Wilkes, L. H., & Corley, T. E. (1968). Planting and cultivation. P. 117–149 In F.C. Elliot, M. Hoover, and W.K. Porter, Jr. (Eds), In Advances in Production and Utilization of Quality Cotton: Principles and Practices (pp. 117–149). The Iowa State University Press.