Vitamin D₃

Crops

1				
2	Identification of Petitioned Substance			
3				
4	Chemical Names:	14	Trade Names:	
5	7-dehydrocholesterol	15	Quintox	
6				
7	Other Name:		CAS Numbers:	
8	Cholecalciferol		67-97-0 (cholecalciferol)	
9	Calciferol			
10	Calciol		Other Codes:	
11	9,10-Seco(5Z,7E)-5,7,10(19)-cholestatrien-3-ol		PC Code: 202901	
12			EINECS Number: 200-673-2	
13				
16				
17	Characterization of Petitioned Substance			
18				
19	Composition of the Substance:			
20				
21	Vitamin D_3 is a biochemical nutrient that is produced naturally in the body in a multi-step process that			
22	involves chemical transformations in the skin, liver, and kidneys (Holick, 1999). The synthesis of vitamin			
23	D_3 in the body begins with the conversion of cholesterol to the vitamin D precursor 7-dehydrocholesterol.			
24	After being exposed to solar ultraviolet (UV) radiation in the skin, 7-dehydrocholesterol forms			
25	cholecalciferol. Cholecalciferol is then hydoxylated in the liver to become calcifediol. Calcifediol is then			
26	hydroxylated in the kidney and becomes calcitriol $(1\alpha 25(OH)_2D_3)$, a hormone that carries out the biological			
27	tunctions of vitamin D_3 . These functions include increasing the transfer of calcium from the intestine into			
28	the bloodstream and increasing the uptake of cal	cium to	bones (Holick, 1999).	
29		1 1		
50 21	This technical report is primarily concerned with cholecalciferol, the form of vitamin D_3 that has been used			
31 22	as an active ingredient in rodenticides. The mole	ecular s	tructure of cholecalcherol is snown in Figure 1.	
52 22	E	lan Ct	wature of Chalassisteral	
33	Figure 1. Molect	ular Str	ucture of Cholecalciferol	

34 35

36 <u>Properties of the Substance</u>:37

38 Vitamin D_3 is a crystalline solid that is not considered to be soluble in water. Vitamin D_3 may react with

39 strong oxidizers and can produce an exothermic reaction when in contact with reducing agents (NOAA,

- 40 2010). A common product of these reactions is hydrogen gas. The physical and chemical properties of
- 41 cholecalciferol are presented in Table 1.

Physical or Chemical Property	Value
Physical State	Solid
Appearance	White or amber, needle-like crystals
Molecular Weight	384.64
Melting Point	84-87° C
Vapor Pressure	2.4x10 ⁻⁹ mm Hg at 25° C
Calubility	Insoluble in water (<0.1 g/L (20 °C)); soluble in
Solubility	alcohol, chloroform, acetone, ether, and fatty oils

Table 1. Chemical Properties of Cholecalciferol

Source: NOAA, 2010

42

43 Specific Uses of the Substance:

44

45 Vitamin D_3 is used as a food fortifier and aids in the growth and maintenance of bones. Fortification with 46 vitamin D_3 can prevent low levels of phosphate in the blood as well as low blood calcium levels (Mayo

47 Clinic, 2010). Commonly fortified foods include milk and cereals. The biochemical form of vitamin D₃

added to fortified foods does not require activation with sunlight. 48

49

Vitamin D_3 is used to treat conditions that cause weak bones and is effective in treating Rickets (Mayo

50 51 Clinic, 2010). Multi-vitamin supplements typically contain vitamin D₃. Medications exist that contain

52 vitamin D_3 and are prescribed to persons diagnosed as vitamin D deficient (Mayo Clinic, 2010). These

53 medications are generally taken orally (Mayo Clinic, 2010).

54

55 Vitamin D_3 is also used as a synthetic rodenticide in gel and pellet baiting products for gophers, mice, rats, and other rodents (ATTRA, 2010b). Rodenticides containing vitamin D_3 cause an excessively elevated level 56 57 of calcium in the blood of target species (ATTRA, 2010b).

58

59 Approved Legal Uses of the Substance:

60

61 Vitamin D_3 is considered by the U.S. Food and Drug Administration (FDA) as generally recognized as safe 62 (GRAS) (21 CFR 184.1950). The regulation states that crystalline vitamin D₃ (C₂₇H₄₄O, CAS No. 67-97-0),

63 also known as cholecalciferol, is the chemical 9,10-seco(5Z,7E,)-5,7,10(19)-cholestatrien-3-ol, and can be

64 added to food as a food ingredient (i.e., nutrient supplement). The FDA considers vitamin D_3 as the

65 vitamin D form that is produced endogenously (i.e., biochemically in the body) in humans through

sunlight activation of 7-dehydrocholesterol in the skin. Vitamin D₃ resin is the concentrated forms of 66

irradiated ergosterol (D_2) and irradiated 7-dehydrocholesterol (D_3) that are separated from the reacting 67

68 materials described in paragraphs (a) (1) and (2) of this section (21 CFR 184.1950). The resulting products

69 are sold as food sources of vitamin D without further purification. Vitamin D₃ as crystals meet the

70 specifications of the Food Chemicals Codex, 3d Ed. (1981), pp. 344 and 345 (21 CFR 184.1950). Vitamin D₃

- 71 resin must be of purity suitable for its intended use.
- 72

73 Vitamin D also may be used in infant formula in accordance with section 412(g) of the Federal Food, Drug,

74 and Cosmetic Act (FDCA) or with regulations promulgated under section 412(a)(2) of the FDCA. Vitamin

75 D also may be used in margarine. Also, in accordance with 21 CFR 184.1950 (c)(1), the vitamin D_3 may

76 used in specific foods as the sole source of added vitamin D only within the specific limitations listed in

77 Table 2. 78

- 79 In 1984, the U.S. Environmental Protection Agency (U.S. EPA) approved vitamin D_3 for use as a
- 80 rodenticide under the Federal Insecticide, Fungicide and Rodenticide Act (FIFRA), and according to the
- 81 current U.S. EPA pesticide registration schedule, a reregistration for vitamin D₃ is scheduled for 2017 (U.S.
- 82 EPA, 2010). Currently, four vitamin D_3 rodenticide products are registered for use (PPIS, 2010). These

- products all are restricted to the control of Norway rats, roof rats, and house mice in and around buildings, 83
- 84 transport vehicles, and alleys, and all must be placed indoors or within 50 feet of a building (NPIRS, 2010).
- 85
- 86
- 87

Table 2 Lovals of	Vitamin D. Allowed in	Various Food Catogorias	$U_{n}dor 21 CEP 184 1050(a)(1)$
Table 2. Levels of	v Italiilli D ₃ Allowed Ill	various roou Calegories	Under 21 CFK 104.1950(C)(1)
	0	0	

Category of Food Functional Use Maximum Levels in Food (defining regulatory citation) (as served) Breakfast cereals (21 CFR 170.3(n)(4)) 350 (IU/100 grams) Nutrient supplement, 170.3(o)(20) Grain products and pastas (21 CFR 90 (IU/100 grams) Do. 170.3(n)(23)Milk (21 CFR 170.3(n)(30)) 42 (IU/100 grams) Do. Milk products (21 CFR 170.3(n)(31)) 89 (IU/100 grams) Do.

Note: Not all foods containing vitamin D₃ are included in this list. 88

89

90 In 2008, the U.S. EPA issued final risk mitigation decisions (U.S. EPA, 2008) for ten rodenticides, including

91 cholecalciferol (i.e., vitamin D_3). The risk mitigation decisions imposed new measures for three categories

of rodenticides. For vitamin D₃, the new risk mitigation measures require that all rodenticide bait products 92

93 marketed to general and residential consumers be sold only with bait stations, with loose bait (e.g., pellets

94 and meal) as a prohibited bait form. This requirement is intended to minimize children's exposure to

95 rodenticide products used in homes.

96

97 Vitamin D_3 is listed as an allowed synthetic substance by the U.S. Department of Agriculture (USDA), National 98 Organic Program (NOP) for use as a rodenticide (7 CFR 205.601(g)(2)). Specifically, vitamin D_3 appears on 99 the 'National List of Allowed and Prohibited Substances' as a synthetic substance allowed for use in 100 organic crop production as a rodenticide. None of the four currently registered vitamin D_3 rodenticide

101 products is included in product lists published by the Organic Materials Review Institute (OMRI, 2010).

102

103 Action of the Substance:

104

105 Small quantities of vitamin D_3 are essential for humans, but in high doses the substance is detrimental. Vitamin D₃ has a number of major functions in animal nutrition, specifically those surrounding the use of 106 107 calcium. Calcium aids in the formation of new bone, egg shells in avian species, milk production, neuromuscular action, and blood clotting (Marshall, 1984). Therefore, the pool of calcium circulating in the 108 109 blood is very carefully regulated. In most non-avians, changes of more than 10-15 percent can be 110 detrimental (Marshall, 1984). A sophisticated system involving the intestines, kidneys and skeleton is 111 primarily regulated by the hormones parathyroid hormone (PTH), calcitonin, and 1, 25-(OH)₂D₃ that generally keep blood calcium levels within 2-3 percent of normal (Marshall, 1984). If calcium levels fall 112 113 below the normal range, the kidneys are stimulated by PTH to produce 1,25-(OH)₂ D₃. When low levels of 114 calcium are needed, a shutoff mechanism is utilized and a kidney enzyme converts 25-OH-D₃ to 24,25-

115 (OH)₂ D₃ (Marshall, 1984).

116

117 Following oral ingestion, vitamin D₃ accumulates in the liver. Following ingestion the induction of calcium

118 mobilization occurs which can result in hypercalcemia and mineralization of major organs (Marshall, 1984). 119 An increase in the calcium level results in mobilization of calcium, which circulates dissolved in the blood

plasma. An elevated level of the crystals of calcium salts can cause mineralization of major organs. 120

121 Mineralization results in tissue damage and can cause heart problems and possibly kidney failure. Tissue

122 damage caused hypercalcemia and mineralization of major organs leads to death in rodents.

- 123
- 124 **Combinations of the Substance:**
- 125

126 It is unlikely that vitamin D_3 , when used according to its label (Bell Laboratories, Inc., 2010) as a

127 rodenticide, will be mixed with any other substances used in organic crop or livestock production. No

128 additional information has been identified that describes the use of vitamin D₃ in combination with other

- 129 substances.
- 130

Vitamin D3

131 Status 132 133 Historic Use: 134 135 As early as the 1600s, vitamin D_3 deficiency was reported and described as what is now identified as 136 Rickets (University of California, Riverside, 1999). In the early 1900s, it became understood that a lack of vitamin D_3 served as the causative factor in many diseases associated with calcium deficiency (University 137 138 of California, Riverside, 1999). 139 140 Vitamin D_3 has historically been added to food as a fortifier to improve calcium levels in the human body. 141 It is commonly added to milk and other similar food products. 142 143 Vitamin D_3 (i.e., cholecalciferol) has been used as a rodenticide since the 1970s. It is used in the creation of 144 pellets and other baits targeted at mice, rats, moles, and gophers (ATTRA, 2010b). 145 146 **OFPA, USDA Final Rule:** 147 148 Under authority of the Organic Food Production Act (OFPA), vitamin D₃ is listed as a synthetic rodenticide 149 on the National List of Allowed and Prohibited Substances (7 CFR 205.601(g)(2)). 150 151 International 152 153 The Canada Food Inspection Agency, Food and Drug Regulations states that "Vitamin D₃ (Cholecalciferol) may be used outdoors and inside greenhouses for rodent control when methods described in par. 5.6.1 of 154 155 CAN/CGSB-32.310, Organic Production Systems – General Principle and Management Standards, have failed. 156 Not allowed inside on-farm food processing and food storage facility." (Last modified in 2009) 157 Evaluation Questions for Substances to be used in Organic Crop or Livestock Production 158 159 160 Evaluation Question #1: What category in OFPA does this substance fall under: (A) Does the substance contain an active ingredient in any of the following categories: copper and sulfur compounds, toxins 161 162 derived from bacteria; pheromones, soaps, horticultural oils, fish emulsions, treated seed, vitamins and 163 minerals; livestock parasiticides and medicines and production aids including netting, tree wraps and 164 seals, insect traps, sticky barriers, row covers, and equipment cleansers? (B) Is the substance a synthetic inert ingredient that is not classified by the EPA as inerts of toxicological concern (i.e., EPA List 4 inerts) 165 (7 U.S.C. § 6517(c)(1)(B)(ii))? Is the synthetic substance an inert ingredient which is not on EPA List 4, 166 but is exempt from a requirement of a tolerance, per 40 CFR part 180? 167 168 169 (A) Vitamin D_3 is considered a vitamin. 170 171 (B) Vitamin D_3 is identified as an inert ingredient, on the U.S. Environmental Protection Agency's "List 4B", in pesticide formulations (U.S. EPA, 2004). 172 173 174 Evaluation Question #2: Describe the most prevalent processes used to manufacture or formulate the petitioned substance. Further, describe any chemical change that may occur during manufacture or 175 formulation of the petitioned substance when this substance is extracted from naturally occurring plant, 176 177 animal, or mineral sources (7 U.S.C. § 6502 (21)). 178 179 The commercial manufacture of vitamin D₃ utilizes cholesterol obtained by organic solvent extraction of 180 animal skins (pig, sheep, or cow) and extensive purification (Norman, 2000). Typically, cholesterol is extracted from the lanolin of sheep wool and converted to 7-dehyrdocholesterol after a process of chemical 181 synthesis that involves eighteen steps (Norman, 2000). The crystalline 7-dehyrdocholesterol is then 182

- dissolved in an organic solvent and irradiated with UV light. This process causes a photochemical
- 184 transformation of 7-dehyrdocholesterol into cholecalciferol that is similar to the natural process that occurs

- in the skin of humans. It is then purified and crystallized further before being formulated for use (Norman, 2000). Details of the manufacturing process are subject to several patents (Norman, 2000) and are not
 publicly available.
 Evaluation Question #3: Is the substance synthetic? Discuss whether the petitioned substance is
- Evaluation Question #3: Is the substance synthetic? Discuss whether the petitioned substance is
 formulated or manufactured by a chemical process, or created by naturally occurring biological
 processes (7 U.S.C. § 6502 (21).
- 192

193 Although vitamin D_3 is a product of a natural biochemical process, a synthetic process is used to

194 manufacture cholecalciferol for use as a rodenticide and food fortifier. This synthetic process, described

- under Evaluation Question #2, includes UV conversion of 7-dehyrdocholesterol to cholecalciferol), as well
 synthetic chemical transformations.
- 197

Evaluation Question #4: Describe the persistence or concentration of the petitioned substance and/or its by-products in the environment (7 U.S.C. § 6518 (m) (2)).

200

It is possible for vitamin D_3 to be released to the environment as a result of production and also because of its use in various medications. The substance will remain in the atmosphere in the particulate-phase based on its vapor pressure (2.4x10⁻⁹ mm Hg at 25° C). Vitamin D_3 is removed from the atmosphere by wet or dry deposition (HSDB, 2006). Photolysis by sunlight is expected to occur because vitamin D_3 can absorb light at wavelengths greater than 290 nm (HSDB, 2006).

206

In the soil, vitamin D_3 is expected to remain immobile based on its estimated K_{oc} of 1.5 x 10⁶ (HSDB, 2006).

- Based on its vapor pressure, volatilization from dry soil is not expected; however, volatilization from moist soil surfaces may occur based upon an estimated Henry's Law constant of 2.3×10^{-4} atm-cu m/mole (HSDB,
- 210 211

2006).

212 In water, volatilization of cholecalciferol is expected and its half-life is estimated as 85 years from a model

213 pond when considering adsorption to sediment and suspended solids in the water column (HSDB, 2006).

Bioconcentration in aquatic organisms is low based on an estimated bioconcentration factor (BCF) of 3.

Vitamin D_3 lacks the functional groups that hydrolyze under environmental conditions; hydrolysis is not expected (HSDB, 2006).

217

218 **Evaluation Question #5:** Describe the toxicity and mode of action of the substance and of its

breakdown products and any contaminants. Describe the persistence and areas of concentration in the environment of the substance and its breakdown products (7 U.S.C. § 6518 (m) (2)).

221

In minute quantities, vitamin D_3 is not considered toxic. However, elevated levels can be lethal and cause hypercalcemia and mineralization of organs.

224

224 225 When too much vitamin D_3 is ingested, the small intestine is stimulated to absorb more phosphorus and 226 calcium. Bone is also mobilized and begins releasing phosphorus and calcium into the blood stream 227 (Marshall, 1984). The kidneys begin reabsorbing calcium, which adds to the elevated concentrations of

calcium in the blood. When the blood calcium level is too high, hormone activity can no longer regulate

and counteract this process and the system fails. System failure results in calcification and blockage of the

circulatory system (Marshall, 1984). This is the fatal action when rodents consume large quantities of

vitamin D₃-based rodenticides. Rodents require a smaller dose than humans to produce lethal effects

because of their size. When calcium levels are elevated, hormones are released by the thyroid to counteract

the process. Hormones react rapidly in mammalian species to ensure that blood and other fluids are fully saturated with normal levels of calcium so that bones and other reactions requiring calcium can occur

(Marshall, 1984). When a lethal dose is ingested, normal hormone regulation of calcium is inhibited

- 235 (Marshall, 1984). 236 (Marshall, 1984).
- 230

Vitamin D_3 is not expected to mobilize in soil and its bioconcentration in aquatic life is expected to be very low (HSDB, 2006). Information on its concentration in the environment is not available. 240 241

Evaluation Question #6: Describe any environmental contamination that could result from the petitioned substance's manufacture, use, misuse, or disposal (7 U.S.C. § 6518 (m) (3)).

The manufacture of vitamin D_3 may result in environmental release (HSDB, 2006). Upon release to the atmosphere, the vapor pressure of vitamin D_3 (2.4x10⁻⁹ mm Hg at 25° C) indicates that the substance will be in the particulate phase (HSDB, 2006). Vitamin D_3 will be removed from the atmosphere by wet or dry deposition (HSDB, 2006). Because vitamin D_3 is capable of absorbing light at wavelengths greater than 290 nm, it may undergo direct photolysis by sunlight (HSDB, 2006).

249

250 If vitamin D_3 is not used properly in bait stations or in indoor environments (where soil is not present), it is 251 possible for the substance to be released to the soil. However, the estimated K_{oc} of vitamin D_3 is considered 252 to be 1.5x10⁶ and mobility in soil is unlikely (THSDB, 2006). It is unlikely that vitamin D_3 would volatilize

from dry soil based on its vapor pressure $(2.4 \times 10^{-9} \text{ mm Hg at } 25^{\circ} \text{ C})$ (HSDB, 2006).

254

255 In water, vitamin D_3 is considered insoluble and, based on the K_{oc} , may adsorb to sediment and other

suspended solids (HSDB, 2006). Volatilization from water surfaces is expected to be attenuated by adsorption to supponded solids and sodiment in the water solumn (HSDP, 2006). The PCE has been

adsorption to suspended solids and sediment in the water column (HSDB, 2006). The BCF has been

estimated to be 3 and bioconcentration in aquatic organisms is unlikely (HSDB, 2006). Vitamin D_3 lacks

functional groups that hydrolyze under environmental conditions, making hydrolysis an unlikely
 occurrence (HSDB, 2006). Because of the insolubility of vitamin D₃, the substance is unlikely to cause

261 groundwater contamination or contamination to other water sources (Kegley et al., 2010).

262

263 Ingestion of large amounts of vitamin D3 rodenticides can cause hypercalcemia in children and domestic pets. Evidence has shown that vitamin D_3 -containing rodenticides have caused death in household pets 264 (Morrow, 2001). Toxicity has been observed more among cats than dogs, and adverse effects correspond to 265 266 6 g (79 pellets or about ¹/₂ tbsp) of a typical 0.075 percent cholecalciferol rat bait ingested by a 20-lb (9-kg) 267 dog (Morrow, 2001). Signs of acute toxicosis develop within 12 to 36 hours after ingestion and include vomiting and diarrhea (sometimes bloody), anorexia, depression, and possibly polyuria and polydipsia 268 269 (Morrow, 2001). With high doses, acute renal failure can occur within 24 to 48 hours and can result in 270 death (Morrow, 2001). Animals that survive may lose renal or musculoskeletal function and may develop

cardiac arrhythmias (Morrow, 2001). Clinical signs and subsequent treatment may last for weeks because
 cardiac arrhythmias (Morrow, 2001). Clinical signs and subsequent treatment may last for weeks because

- of the lipid storage and slow elimination of the cholecalciferol metabolites (Morrow, 2001).
- 273

Evaluation Question #7: Describe any known chemical interactions between the petitioned substance
 and other substances used in organic crop or livestock production or handling. Describe any
 environmental or human health effects from these chemical interactions (7 U.S.C. § 6518 (m) (1)).

277

The manufacturer states (Bell Laboratories Inc., 2010) that it is unlikely that vitamin D_3 rodenticide products, when used as directed, will be mixed with any other substances used in organic crop or livestock

products, when used as directed, will be mixed with any other substances used in organic crop or livestock production . Vitamin D_3 is manufactured into pellets and blocks used to bait mice and rats. The U.S. EPA (2008) requires that vitamin D_3 containing rodenticides be used in a bait station when non-target wildlife

- and children could be in contact with the rodenticide.
- 283

284Evaluation Question #8: Describe any effects of the petitioned substance on biological or chemical285interactions in the agro-ecosystem, including physiological effects on soil organisms (including the salt286index and solubility of the soil) crops, and livestock (7 U.S.C. § 6518 (m) (5)).

287

No studies have been found that investigate the effects of vitamin D_3 on soil-dwelling organisms. Vitamin D_3 is unlikely to be mobile in the soil based on its K_{oc} and solubility.

290

291 According to manufacturer instructions, rodenticide baits (i.e., pellets or blocks) are self contained in

baiting stations and do not interact with the agro-ecosystem (Bell Laboratories Inc., 2010). Baiting stations

are generally specific to the target organism and prevent any mixing within the agro environment.

294 Moreover, all currently registered vitamin D₃ rodenticide products are intended for use in or around

buildings or transportation vehicles (NPIRS, 2010).

 Date in the initial properties in the initial production for the control in the action initial products in the products be used where livestock are not present and also within contained baiting stations or traps. It is possible that non-target organisms may be poisoned by ingesting vitamin D₃ rodenticides. Accidental poisonings and lethal effects on domestic pets have been documented in the past (Morrow, 2001). Based on observed effects in domestic pets, it can be inferred that similar effects may be observed in non-target wildlife or livestock. However, risk mitigation requirements imposed by U.S. EPA since 2008 were conceived to reduce accidental poisonings (see the "Approved Legal Uses of the Substance" section above). Evaluation Question #9: Discuss and summarize findings on whether the petitioned substance may be harmful to the environment (7 U.S.C. § 6517 (c) (1) (A) (i) and 7 U.S.C. § 6517 (c) (2) (A) (i)). Based on chemical properties, mobility of vitamin D₃ in soil is unlikely and volatilization from dry soil surfaces is not expected (HSDB, 2006). Data on the biodegradation of vitamin D₃ no ali available. In the ambient atmosphere, vitamin D₃ is expected to remain as a particulate due to its vapor pressure and may be removed from the air by wet and dry deposition (HSDB, 2006). Photolysis (i.e., photochemical degradation) from direct sunlight is likely to occur because vitamin D₃ can absorb light at wavelengths greater than 290 nm (HSDB 2006). Very limited information is available on the environmental toxicology of vitamin D₃. Itamin D₃ vitamin D₃ would bioaccumulate in aquatic life (HSDB, 2006). Toxicity studies in birds have indicated that vitamin D₃ is of low toxicity (U.S. EPA, 1984). There have been reports of acute poisoning in domestic pets and effects appear to be similar to those of humans. Clinical signs of poisoning include degression, letharys, anorexia, weatheres, recumbency and, int
 biganismi, including investice, would have control to the control of the control of
 trade products be used where investock are not present and also within contained baiting stations or trays. It is possible that non-target organisms may be poisoned by ingesting vitamin Do rodenticides. Accidental poisonings and lethal effects on domestic pets have been documented in the past (Morrow, 2001). Based on observed effects in domestic pets, it can be inferred that similar effects may be observed in non-target wildlife or livestock. However, risk mitigation requirements imposed by US. EPA since 2008 were conceived to reduce accidental poisonings (see the "Approved Legal Uses of the Substance" section above). Evaluation Question #9: Discuss and summarize findings on whether the petitioned substance may be harmful to the environment (7 U.S.C. § 6517 (c) (1) (A) (i) and 7 U.S.C. § 6517 (c) (2) (A) (ii). Based on chemical properties, mobility of vitamin D₃ in soil is unlikely and volatilization from dry soil surfaces is not expected (HSDB, 2006). Data on the biodegradation of vitamin D₃ in soil are not available. In the ambient atmosphere, vitamin D₃ is expected to remain as a particulate due to its vapor pressure and may be removed from the air by wet and dry deposition (HSDB, 2006). Photolysis (i.e., photochemical degradation) from direct sunlight is likely to occur because vitamin D₃ can absorb light at wavelengths greater than 290 nm (HSDB 2006). Very limited information is available on the environmental toxicology of vitamin D₃. Vitamin D₃ is virtually insoluble in water and is likely to adsorb to sediment and suspended solids (HSDB, 2006). The substance is not predicted to cause adverse effects to aquatic wildlife (U.S. EPA, 1984). There have been reports of acute poisoning in domestic pets and effects appear to be similar to those of humans. Cl
 Taps. It is possible that non-target organisms may be poisoned by ingesting vitamin D₃ toothericides. Accidental poisonings and lethal effects on domestic pets have been documented in the past (Morrow, 2001). Based on observed effects in domestic pets, it can be inferred that similar effects may be observed in non-target wildlife or livestock. However, risk mitigation requirements imposed by U.S. EPA since 2008 were conceived to reduce accidental poisonings (see the "Approved Legal Uses of the Substance" section above). Evaluation Question #9: Discuss and summarize findings on whether the petitioned substance may be harmful to the environment (7 U.S.C. § 6517 (c) (1) (A) (i) and 7 U.S.C. § 6517 (c) (2) (A) (i)). Based on chemical properties, mobility of vitamin D₃ in soil is unlikely and volatilization from dry soil surfaces is not expected (HSDB, 2006). Data on the biodegradation of vitamin D₃ in soil are not available. In the ambient atmosphere, vitamin D₃ is expected to remain as a particulate due to its vapor pressure and may be removed from the air by wet and dry deposition (HSDB, 2006). Photolysis (i.e., photochemical degradation) from direct sunlight is likely to occur because vitamin D₃ can absorb light at wavelengths greater than 290 nm (HSDB 2006). Very limited information is available on the environmental toxicology of vitamin D₃. Vitamin D₃ is virtually insoluble in water and is likely to adsorb to sediment and suspended solids (HSDB, 2006). The substance is not predicted to cause adverse effects to aquatic wildlife (U.S. EPA, 1984). There have been reports of acute poisoning in domestic pets and effects appear to be similar to those of humans. Clinical signs of poisoning include depression, lethargy, ancrexia, vomiting, and polydipsia and severe clinical signs of poisoning include depression, lethargy, ancrexia, vomiting, and polydipsia and severe clinical signs of poisoning include depression a
 Accidental poisonings and lethal effects in domestic pets have been documented in the past (Morrow, 100). Based on observed effects in domestic pets, it can be inferred that similar effects may be observed in non-target wildlife or livestock. However, risk mitigation requirements imposed by U.S. EPA since 2008 were conceived to reduce accidental poisonings (see the "Approved Legal Uses of the Substance" section above). Evaluation Question #9: Discuss and summarize findings on whether the petitioned substance may be harmful to the environment (7 U.S.C. § 6517 (c) (1) (A) (i) and 7 U.S.C. § 6517 (c) (2) (A) (i)). Based on chemical properties, mobility of vitamin D₃ in soil is unlikely and volatilization from dry soil surfaces is not expected (HSDB, 2006). Data on the biodegradation of vitamin D₃ in soil are not available. In the ambient atmosphere, vitamin D₃ is expected to remain as a particulate due to its vapor pressure and may be removed from the air by wet and dry deposition (HSDB, 2006). Photolysis (i.e., photochemical degradation) from direct sunlight is likely to occur because vitamin D₃ can absorb light at wavelengths greater than 290 nm (HSDB 2006). Very limited information is available on the environmental toxicology of vitamin D₃. Vitamin D₃ is virtually insoluble in water and is likely to adsorb to sediment and suspended solids (HSDB, 2006). The substance is not predicted to cause adverse effects to adquate wildlife (U.S. EPA, 1984). It is unlikely that vitamin D₃ would bioaccumulate in aquatic life (HSDB, 2006). Toxicity studies in birds have indicated that vitamin D₃ is of low toxicity (U.S. EPA, 1984). There have been reports of acute poisoning in domestic pets and effects appear to be similar to those of humans. Clinical signs of poisoning include depression, lethargy, anorexia, weakness, recumbency and, internally, extensive mineralization of caratiovascular and ther soft tissues (Mason and
 2001). Based on observed effects in domestic pets, it can be inferred that similar effects may be observed in non-target wildlife or livestock. However, risk mitigation requirements imposed by U.S. EPA since 2008 were conceived to reduce accidental poisonings (see the "Approved Legal Uses of the Substance" section above). Evaluation Ouestion #9: Discuss and summarize findings on whether the petitioned substance may be harmful to the environment (7 U.S.C. § 6517 (c) (1) (A) (i) and 7 U.S.C. § 6517 (c) (2) (A) (ii). Based on chemical properties, mobility of vitamin D₃ in soil is unlikely and volatilization from dry soil surfaces is not expected (HSDB, 2006). Data on the biodegradation of vitamin D₃ in soil are not available. In the ambient atmosphere, vitamin D₃ is expected to remain as a particulate due to its vapor pressure and may be removed from the air by wet and dry deposition (HSDB, 2006). Photolysis (i.e., photochemical degradation) from direct sunlight is likely to occur because vitamin D₃ can absorb light at wavelengths greater than 290 nm (HSDB 2006). Very limited information is available on the environmental toxicology of vitamin D₃. Vitamin D₃ is vitrually insoluble in water and is likely to adsorb to sediment and suspended solids (HSDB, 2006). The substance is not predicted to cause adverse effects to aquatic wildlife (U.S. EPA, 1984). It is unlikely that vitamin D₃ would bioaccumulate in aquatic life (HSDB, 2006). There have been reports of acute poisoning in domestic pets and effects appear to be similar to those of humans. Clinical signs of poisoning include depression, lethargy, anorexia, vomiting, and polydipsia and severe clinical signs include calcification of the kidneys and stomach (Mason and Littin, 2003). Internally, poisoned dogs show calcification of cardiovascular and other soft tissues (Mason and Littin, 2003). The U.S. EPA's final risk mitigation decision for ten rodenticides (U.S. EPA, 2008), including chol
 non-target wildlife or livestock. However, risk mitigation requirements imposed by U.S. EPA since 2008 were conceived to reduce accidental poisonings (see the "Approved Legal Uses of the Substance" section above). Evaluation Question #9: Discuss and summarize findings on whether the petitioned substance may be harmful to the environment (7 U.S.C. § 6517 (c) (1) (A) (i) and 7 U.S.C. § 6517 (c) (2) (A) (i)). Based on chemical properties, mobility of vitamin D₃ in soil is unlikely and volatilization from dry soil surfaces is not expected (HSDB, 2006). Data on the biodegradation of vitamin D₃ in soil are not available. In the ambient atmosphere, vitamin D₃ is expected to remain as a particulate due to its vapor pressure and may be removed from the air by wet and dry deposition (HSDB, 2006). Photolysis (i.e., photochemical degradation) from direct sunlight is likely to occur because vitamin D₃ can absorb light at wavelengths greater than 290 nm (HSDB 2006). Very limited information is available on the environmental toxicology of vitamin D₂. Vitamin D₃ is virtually insoluble in water and is likely to adsorb to sediment and supended solids (HSDB, 2006). The substance is not predicted to cause adverse effects to aquatic wildlife (U.S. EPA, 1984). It is unlikely that vitamin D₃ would bioaccumulate in aquatic life (HSDB, 2006). Toxicity studies in birds have indicated that vitamin D₃ is of low toxicity (U.S. EPA, 1984). There have been reports of acute poisoning in domestic pets and effects appear to be similar to those of humans. Clinical signs of poisoning in domestic pets and effects appear to be similar to those of humans. Clinical signs of poisoning in domestic pets and effects appear to be similar to those of humans. Clinical signs of poisoning in domestic pets and effects appear to be similar to those of humans. Clinical signs of poisoning include degression, letharge, anorexia, weakness, recumbency and, internally, extensive m
were conceived to reduce accidental poisonings (see the "Approved Legal Uses of the Substance" section above). Evaluation Question #9: Discuss and summarize findings on whether the petitioned substance may be harmful to the environment (7 U.S.C. § 6517 (c) (1) (A) (i) and 7 U.S.C. § 6517 (c) (2) (A) (i)). Based on chemical properties, mobility of vitamin D ₃ in soil is unlikely and volatilization from dry soil surfaces is not expected (HSDB, 2006). Data on the biodegradation of vitamin D ₃ in soil are not available. In the ambient atmosphere, vitamin D ₃ is expected to remain as a particulate due to its vapor pressure and may be removed from the air by wet and dry deposition (HSDB, 2006). Photolysis (i.e., photochemical degradation) from direct sunlight is likely to occur because vitamin D ₃ can absorb light at wavelengths greater than 290 nm (HSDB 2006). Very limited information is available on the environmental toxicology of vitamin D ₃ . Vitamin D ₃ is virtually insoluble in water and is likely to adsorb to sediment and suspended solids (HSDB, 2006). The substance is not predicted to cause adverse effects to aquatic wildlife (U.S. EPA, 1984). It is unlikely that vitamin D ₃ would bioaccumulate in aquatic life (HSDB, 2006). Toxicity studies in birds have indicated that vitamin D ₃ is of low toxicity (U.S. EPA, 1984). There have been reports of acute poisoning in domestic pets and effects appear to be similar to those of humans. Clinical signs of poisoning include depression, lethargy, anorexia, vomiting, and polydipsia and severe clinical signs of poisoning include degression, lethargy, anorexia, wakness, recumbency and, internally, extensive mineralization of vascular walls, gastrointestinal hemorrhage, and myocardial necrosis (Mason and Littin, 2003). Poisoned horses exhibited leg stiffness, anorexia, weakness, recumbency and, internally, extensive mineralization of cardiovascular and other soft tissues (Mason and Littin, 2003). The U.S. EPA's final risk mitigation decision for
 above). Evaluation Question #9: Discuss and summarize findings on whether the petitioned substance may be harmful to the environment (7 U.S.C. § 6517 (c) (1) (A) (i) and 7 U.S.C. § 6517 (c) (2) (A) (i)). Based on chemical properties, mobility of vitamin D₃ in soil is unlikely and volatilization from dry soil surfaces is not expected (HSDB, 2006). Data on the biodegradation of vitamin D₃ in soil are not available. In the ambient atmosphere, vitamin D₃ is expected to remain as a particulate due to its vapor pressure and may be removed from the air by wet and dry deposition (HSDB, 2006). Photolysis (i.e., photochemical degradation) from direct sunlight is likely to occur because vitamin D₃ can absorb light at wavelengths greater than 290 nm (HSDB 2006). Very limited information is available on the environmental toxicology of vitamin D₃. Vitamin D₃ is virtually insoluble in water and is likely to adsorb to sediment and suspended solids (HSDB, 2006). The substance is not predicted to cause adverse effects to aquatic wildlife (U.S. EPA, 1984). It is unlikely that vitamin D₃ would bioaccumulate in aquatic life (HSDB, 2006). Toxicity studies in birds have indicated that vitamin D₃ is of low toxicity (U.S. EPA, 1984). There have been reports of acute poisoning in domestic pets and effects appear to be similar to those of humans. Clinical signs of poisoning include depression, lethargy, anorexia, vomiting, and polydipsia and severe clinical signs include calcification of the kidneys and stomach (Mason and Littin, 2003). Internally, poisoned dogs show calcification of taxecular walls, gastrointestinal hemorrhage, and myocardial necrosis (Mason and Littin, 2003). Poisoned horses exhibited leg stiffness, anorexia, weakness, recumbency and, internally, extensive mineralization of cardiovascular and other soft tissues (Mason and Littin, 2003). The U.S. EPA's final risk mitigation decision for ten rodenticide
306Evaluation Question #9: Discuss and summarize findings on whether the petitioned substance may be harmful to the environment (7 U.S.C. § 6517 (c) (1) (A) (i) and 7 U.S.C. § 6517 (c) (2) (A) (i)).309Based on chemical properties, mobility of vitamin D3 in soil is unlikely and volatilization from dry soil surfaces is not expected (HSDB, 2006). Data on the biodegradation of vitamin D3 in soil are not available.311In the ambient atmosphere, vitamin D3 is expected to remain as a particulate due to its vapor pressure and may be removed from the air by wet and dry deposition (HSDB, 2006). Photolysis (i.e., photochemical degradation) from direct sunlight is likely to occur because vitamin D3 can absorb light at wavelengths greater than 290 nm (HSDB 2006).317Very limited information is available on the environmental toxicology of vitamin D3. Vitamin D3 is virtually insoluble in water and is likely to adsorb to sediment and suspended solids (HSDB, 2006). The substance is not predicted to cause adverse effects to aquatic wildlife (U.S. EPA, 1984).318Very limited information is available on the environmental toxicology of vitamin D3. vitamin D3 would bioaccumulate in aquatic life (HSDB, 2006).323Toxicity studies in birds have indicated that vitamin D3 is of low toxicity (U.S. EPA, 1984).324There have been reports of acute poisoning in domestic pets and effects appear to be similar to those of humans. Clinical signs of poisoning include depression, lethargy, anorexia, vomiting, and polydipsia and severe clinical signs include calcification of the kidneys and stomach (Mason and Littin, 2003). Disoned hores exhibited leg stiffness, anorexia, weakness, recumbency and, internally, extensive mineralization of cardiovascular and other soft tissues (Mason and Littin, 2003).333
Evaluation Question #9: Discuss and summarize findings on whether the petitioned substance may be harmful to the environment (7 U.S.C. § 6517 (c) (1) (A) (i) and 7 U.S.C. § 6517 (c) (2) (A) (i)). Based on chemical properties, mobility of vitamin D ₃ in soil is unlikely and volatilization from dry soil surfaces is not expected (HSDB, 2006). Data on the biodegradation of vitamin D ₃ in soil are not available. In the ambient atmosphere, vitamin D ₃ is expected to remain as a particulate due to its vapor pressure and may be removed from the air by wet and dry deposition (HSDB, 2006). Photolysis (i.e., photochemical degradation) from direct sunlight is likely to occur because vitamin D ₃ can absorb light at wavelengths greater than 290 nm (HSDB 2006). Very limited information is available on the environmental toxicology of vitamin D ₃ . Vitamin D ₃ is virtually insoluble in water and is likely to adsorb to sediment and suspended solids (HSDB, 2006). The substance is not predicted to cause adverse effects to aquatic wildlife (U.S. EPA, 1984). It is unlikely that vitamin D ₃ would bioaccumulate in aquatic life (HSDB, 2006). There have been reports of acute poisoning in domestic pets and effects appear to be similar to those of humans. Clinical signs of poisoning include depression, lethargy, anorexia, weakness, recumbency and, internally, extensive mineralization of cardiovascular and other soft tissues (Mason and Littin, 2003). severe clinical signs include calcific
 harmful to the environment (7 U.S.C. § 6517 (c) (1) (A) (i) and 7 U.S.C. § 6517 (c) (2) (A) (i)). Based on chemical properties, mobility of vitamin D₃ in soil is unlikely and volatilization from dry soil surfaces is not expected (HSDB, 2006). Data on the biodegradation of vitamin D₃ in soil are not available. In the ambient atmosphere, vitamin D₃ is expected to remain as a particulate due to its vapor pressure and may be removed from the air by wet and dry deposition (HSDB, 2006). Photolysis (i.e., photochemical degradation) from direct sunlight is likely to occur because vitamin D₃ can absorb light at wavelengths greater than 290 nm (HSDB 2006). Very limited information is available on the environmental toxicology of vitamin D₃. Vitamin D₃ is virtually insoluble in water and is likely to adsorb to sediment and suspended solids (HSDB, 2006). The substance is not predicted to cause adverse effects to aquatic wildlife (U.S. EPA, 1984). It is unlikely that vitamin D₃ would bioaccumulate in aquatic life (HSDB, 2006). Toxicity studies in birds have indicated that vitamin D₃ is of low toxicity (U.S. EPA, 1984). There have been reports of acute poisoning in domestic pets and effects appear to be similar to those of humans. Clinical signs of poisoning include depression, lethargy, anorexia, vomiting, and polydipsia and severe clinical signs include calcification of the kidneys and stomach (Mason and Littin, 2003). Internally, poisoned dogs show calcification of cardiovascular and other soft tissues (Mason and Littin, 2003). The U.S. EPA's final risk mitigation decision for ten rodenticides (U.S. EPA, 2008), including cholecalcifierd, were intended to protect children, pets, and wildlife from accidental poisonings. These decisions include specifications for packaging (e.g., tamper-resistance) and use practices of registered rodenticides. Evaluation Question #10: Describe and summarize any reported effects upon human health from use
 Based on chemical properties, mobility of vitamin D₃ in soil is unlikely and volatilization from dry soil surfaces is not expected (HSDB, 2006). Data on the biodegradation of vitamin D₃ in soil are not available. In the ambient atmosphere, vitamin D₃ is expected to remain as a particulate due to its vapor pressure and may be removed from the air by wet and dry deposition (HSDB, 2006). Photolysis (i.e., photochemical degradation) from direct sunlight is likely to occur because vitamin D₃ can absorb light at wavelengths greater than 290 nm (HSDB 2006). Very limited information is available on the environmental toxicology of vitamin D₃. Vitamin D₃ is virtually insoluble in water and is likely to adsorb to sediment and suspended solids (HSDB, 2006). The substance is not predicted to cause adverse effects to aquatic wildlife (U.S. EPA, 1984). It is unlikely that vitamin D₃ would bioaccumulate in aquatic life (HSDB, 2006). Toxicity studies in birds have indicated that vitamin D₃ is of low toxicity (U.S. EPA, 1984). There have been reports of acute poisoning in domestic pets and effects appear to be similar to those of humans. Clinical signs of poisoning include depression, lethargy, anorexia, vomiting, and polydipsia and severe clinical signs include calcification of the kidneys and stomach (Mason and Littin, 2003). Internally, poisoned dogs show calcification of cardiovascular and other soft tissues (Mason and Littin, 2003). The U.S. EPA's final risk mitigation decision for ten rodenticides (U.S. EPA, 2008), including cholecalciferol, were intended to protect children, pets, and wildlife from accidental poisonings. These decisions include specifications for packaging (e.g., tamper-resistance) and use practices of registered rodenticides.
 Based on chemical properties, mobility of vitamin D₃ in soil is unlikely and volatilization from dry soil surfaces is not expected (HSDB, 2006). Data on the biodegradation of vitamin D₃ in soil are not available. In the ambient atmosphere, vitamin D₃ is expected to remain as a particulate due to its vapor pressure and may be removed from the air by wet and dry deposition (HSDB, 2006). Photolysis (i.e., photochemical degradation) from direct sunlight is likely to occur because vitamin D₃ can absorb light at wavelengths greater than 290 nm (HSDB 2006). Very limited information is available on the environmental toxicology of vitamin D₃. Vitamin D₃ is virtually insoluble in water and is likely to adsorb to sediment and suspended solids (HSDB, 2006). The substance is not predicted to cause adverse effects to aquatic wildlife (U.S. EPA, 1984). It is unlikely that vitamin D₃ would bioaccumulate in aquatic life (HSDB, 2006). Toxicity studies in birds have indicated that vitamin D₃ is of low toxicity (U.S. EPA, 1984). There have been reports of acute poisoning in domestic pets and effects appear to be similar to those of humans. Clinical signs of poisoning include depression, lethargy, anorexia, vomiting, and polydipsia and severe clinical signs include calcification of the kidneys and stomach (Mason and Littin, 2003). Internally, poisoned dogs show calcification of cardiovascular and other soft tissues (Mason and Littin, 2003). The U.S. EPA's final risk mitigation decision for ten rodenticides (U.S. EPA, 2008), including cholecalciferol, were intended to protect children, pets, and wildlife from accidental poisonings. These decisions include specifications for packaging (e.g., tamper-resistance) and use practices of registered rodenticides.
 surfaces is not expected (HSDB, 2006). Data on the biodegradation of vitamin D₃ in soil are not available. In the ambient atmosphere, vitamin D₃ is expected to remain as a particulate due to its vapor pressure and may be removed from the air by wet and dry deposition (HSDB, 2006). Photolysis (i.e., photochemical degradation) from direct sunlight is likely to occur because vitamin D₃ can absorb light at wavelengths greater than 290 nm (HSDB 2006). Very limited information is available on the environmental toxicology of vitamin D₃. Vitamin D₃ is virtually insoluble in water and is likely to adsorb to sediment and suspended solids (HSDB, 2006). The substance is not predicted to cause adverse effects to aquatic wildlife (U.S. EPA, 1984). It is unlikely that vitamin D₃ would bioaccumulate in aquatic life (HSDB, 2006). Toxicity studies in birds have indicated that vitamin D₃ is of low toxicity (U.S. EPA, 1984). There have been reports of acute poisoning in domestic pets and effects appear to be similar to those of humans. Clinical signs of poisoning include depression, lethargy, anorexia, vomiting, and polydipsia and severe clinical signs of poisoned horses exhibited leg stiffness, anorexia, weakness, recumbency and, internally, extensive mineralization of cardiovascular and other soft tissues (Mason and Littin, 2003). The U.S. EPA's final risk mitigation decision for ten rodenticides (U.S. EPA, 2008), including cholecalciferol, were intended to protect children, pets, and wildlife from accidental poisonings. These decisions include specifications for packaging (e.g., tamper-resistance) and use practices of registered rodenticides.
 In the ambient atmosphere, vitamin D₃ is expected to remain as a particulate due to its vapor pressure and may be removed from the air by wet and dry deposition (HSDB, 2006). Photolysis (i.e., photochemical degradation) from direct sunlight is likely to occur because vitamin D₃ can absorb light at wavelengths greater than 290 nm (HSDB 2006). Very limited information is available on the environmental toxicology of vitamin D₃. Vitamin D₃ is virtually insoluble in water and is likely to adsorb to sediment and suspended solids (HSDB, 2006). The substance is not predicted to cause adverse effects to aquatic wildlife (U.S. EPA, 1984). It is unlikely that vitamin D₃ would bioaccumulate in aquatic life (HSDB, 2006). Toxicity studies in birds have indicated that vitamin D₃ is of low toxicity (U.S. EPA, 1984). There have been reports of acute poisoning in domestic pets and effects appear to be similar to those of humans. Clinical signs of poisoning include depression, lethargy, anorexia, vomiting, and polydipsia and severe clinical signs include calcification of the kidneys and stomach (Mason and Littin, 2003). Internally, poisoned dogs show calcification of vascular walls, gastrointestinal hemorrhage, and myocardial necrosis (Mason and Littin, 2003). Poisoned horses exhibited leg stiffness, anorexia, weakness, recumbency and, internally, extensive mineralization of cardiovascular and other soft tissues (Mason and Littin, 2003). The U.S. EPA's final risk mitigation decision for ten rodenticides (U.S. EPA, 2008), including cholecalciferol, were intended to protect children, pets, and wildlife from accidental poisonings. These decisions include specifications for packaging (e.g., tamper-resistance) and use practices of registered rodenticides. Evaluation Question #10: Describe and summarize any reported effects upon human health from use of the patitioned substance (TUS C. 8 6517 (c) (1) (A) (i) and TUS C. 8 6518
 In the ambient atmosphere, vitamin D₃ is expected to remain as a particulate due to its vapor pressure and may be removed from the air by wet and dry deposition (HSDB, 2006). Photolysis (i.e., photochemical degradation) from direct sunlight is likely to occur because vitamin D₃ can absorb light at wavelengths greater than 290 nm (HSDB 2006). Very limited information is available on the environmental toxicology of vitamin D₃. Vitamin D₃ is virtually insoluble in water and is likely to adsorb to sediment and suspended solids (HSDB, 2006). The substance is not predicted to cause adverse effects to aquatic wildlife (U.S. EPA, 1984). It is unlikely that vitamin D₃ would bioaccumulate in aquatic life (HSDB, 2006). Toxicity studies in birds have indicated that vitamin D₃ is of low toxicity (U.S. EPA, 1984). There have been reports of acute poisoning in domestic pets and effects appear to be similar to those of humans. Clinical signs of poisoning include depression, lethargy, anorexia, vomiting, and polydipsia and severe clinical signs include calcification of the kidneys and stomach (Mason and Littin, 2003). Internally, poisoned dogs show calcification of vascular walls, gastrointestinal hemorrhage, and myocardial necrosis (Mason and Littin, 2003). Poisoned horses exhibited leg stiffness, anorexia, weakness, recumbency and, internally, extensive mineralization of cardiovascular and other soft tissues (Mason and Littin, 2003). The U.S. EPA's final risk mitigation decision for ten rodenticides (U.S. EPA, 2008), including cholecalciferol, were intended to protect children, pets, and wildlife from accidental poisonings. These decisions include specifications for packaging (e.g., tamper-resistance) and use practices of registered rodenticides. Evaluation Question #10: Describe and summarize any reported effects upon human health from use of the netitioned substance (7 U S C 86517 (c) (1) (A) (a) 7 U S C 86517 (c) (2) (A) (a) and 7 U S
 may be removed from the air by wet and dry deposition (HSDB, 2006). Photolysis (i.e., photochemical degradation) from direct sunlight is likely to occur because vitamin D₃ can absorb light at wavelengths greater than 290 nm (HSDB 2006). Very limited information is available on the environmental toxicology of vitamin D₃. Vitamin D₃ is virtually insoluble in water and is likely to adsorb to sediment and suspended solids (HSDB, 2006). The substance is not predicted to cause adverse effects to aquatic wildlife (U.S. EPA, 1984). It is unlikely that vitamin D₃ would bioaccumulate in aquatic life (HSDB, 2006). Toxicity studies in birds have indicated that vitamin D₃ is of low toxicity (U.S. EPA, 1984). There have been reports of acute poisoning in domestic pets and effects appear to be similar to those of humans. Clinical signs of poisoning include depression, lethargy, anorexia, vomiting, and polydipsia and severe clinical signs include calcification of the kidneys and stomach (Mason and Littin, 2003). Internally, poisoned dogs show calcification of vascular walls, gastrointestinal hemorrhage, and myocardial necrosis (Mason and Littin, 2003). Poisoned horses exhibited leg stiffness, anorexia, weakness, recumbency and, internally, extensive mineralization of cardiovascular and other soft tissues (Mason and Littin, 2003). The U.S. EPA's final risk mitigation decision for ten rodenticides (U.S. EPA, 2008), including cholecalciferol, were intended to protect children, pets, and wildlife from accidental poisonings. These decisions include specifications for packaging (e.g., tamper-resistance) and use practices of registered rodenticides. Evaluation Question #10: Describe and summarize any reported effects upon human health from use of the apetitioned substance (7 U S C 8 6517 (c) (1) (A) (i) 7 U S C 8 6517 (c) (2) (A) (i) and 7 U S C 8 518
 degradation) from direct sunlight is likely to occur because vitamin D₃ can absorb light at wavelengths greater than 290 nm (HSDB 2006). Very limited information is available on the environmental toxicology of vitamin D₃. Vitamin D₃ is virtually insoluble in water and is likely to adsorb to sediment and suspended solids (HSDB, 2006). The substance is not predicted to cause adverse effects to aquatic wildlife (U.S. EPA, 1984). It is unlikely that vitamin D₃ would bioaccumulate in aquatic life (HSDB, 2006). Toxicity studies in birds have indicated that vitamin D₃ is of low toxicity (U.S. EPA, 1984). There have been reports of acute poisoning in domestic pets and effects appear to be similar to those of humans. Clinical signs of poisoning include depression, lethargy, anorexia, vomiting, and polydipsia and severe clinical signs include calcification of the kidneys and stomach (Mason and Littin, 2003). Internally, poisoned dogs show calcification of vascular walls, gastrointestinal hemorrhage, and myocardial necrosis (Mason and Littin, 2003). Poisoned horses exhibited leg stiffness, anorexia, weakness, recumbency and, internally, extensive mineralization of cardiovascular and other soft tissues (Mason and Littin, 2003). The U.S. EPA's final risk mitigation decision for ten rodenticides (U.S. EPA, 2008), including cholecalciferol, were intended to protect children, pets, and wildlife from accidental poisonings. These decisions include specifications for packaging (e.g., tamper-resistance) and use practices of registered rodenticides.
 greater than 290 nm (HSDB 2006). Very limited information is available on the environmental toxicology of vitamin D₃. Vitamin D₃ is virtually insoluble in water and is likely to adsorb to sediment and suspended solids (HSDB, 2006). The substance is not predicted to cause adverse effects to aquatic wildlife (U.S. EPA, 1984). It is unlikely that vitamin D₃ would bioaccumulate in aquatic life (HSDB, 2006). Toxicity studies in birds have indicated that vitamin D₃ is of low toxicity (U.S. EPA, 1984). There have been reports of acute poisoning in domestic pets and effects appear to be similar to those of humans. Clinical signs of poisoning include depression, lethargy, anorexia, vomiting, and polydipsia and severe clinical signs include calcification of the kidneys and stomach (Mason and Littin, 2003). Internally, poisoned dogs show calcification of vascular walls, gastrointestinal hemorrhage, and myocardial necrosis (Mason and Littin, 2003). Poisoned horses exhibited leg stiffness, anorexia, weakness, recumbency and, internally, extensive mineralization of cardiovascular and other soft tissues (Mason and Littin, 2003). The U.S. EPA's final risk mitigation decision for ten rodenticides (U.S. EPA, 2008), including cholecalciferol, were intended to protect children, pets, and wildlife from accidental poisonings. These decisions include specifications for packaging (e.g., tamper-resistance) and use practices of registered rodenticides.
 Very limited information is available on the environmental toxicology of vitamin D₃. Vitamin D₃ is virtually insoluble in water and is likely to adsorb to sediment and suspended solids (HSDB, 2006). The substance is not predicted to cause adverse effects to aquatic wildlife (U.S. EPA, 1984). It is unlikely that vitamin D₃ would bioaccumulate in aquatic life (HSDB, 2006). Toxicity studies in birds have indicated that vitamin D₃ is of low toxicity (U.S. EPA, 1984). There have been reports of acute poisoning in domestic pets and effects appear to be similar to those of humans. Clinical signs of poisoning include depression, lethargy, anorexia, vomiting, and polydipsia and severe clinical signs include calcification of the kidneys and stomach (Mason and Littin, 2003). Internally, poisoned dogs show calcification of vascular walls, gastrointestinal hemorrhage, and myocardial necrosis (Mason and Littin, 2003). Poisoned horses exhibited leg stiffness, anorexia, weakness, recumbency and, internally, extensive mineralization of cardiovascular and other soft tissues (Mason and Littin, 2003). The U.S. EPA's final risk mitigation decision for ten rodenticides (U.S. EPA, 2008), including cholecalciferol, were intended to protect children, pets, and wildlife from accidental poisonings. These decisions include specifications for packaging (e.g., tamper-resistance) and use practices of registered rodenticides.
 Very limited information is available on the environmental toxicology of vitamin D₃. Vitamin D₃ is virtually insoluble in water and is likely to adsorb to sediment and suspended solids (HSDB, 2006). The substance is not predicted to cause adverse effects to aquatic wildlife (U.S. EPA, 1984). It is unlikely that vitamin D₃ would bioaccumulate in aquatic life (HSDB, 2006). Toxicity studies in birds have indicated that vitamin D₃ is of low toxicity (U.S. EPA, 1984). There have been reports of acute poisoning in domestic pets and effects appear to be similar to those of humans. Clinical signs of poisoning include depression, lethargy, anorexia, vomiting, and polydipsia and severe clinical signs include calcification of the kidneys and stomach (Mason and Littin, 2003). Internally, poisoned dogs show calcification of vascular walls, gastrointestinal hemorrhage, and myocardial necrosis (Mason and Littin, 2003). Poisoned horses exhibited leg stiffness, anorexia, weakness, recumbency and, internally, extensive mineralization of cardiovascular and other soft tissues (Mason and Littin, 2003). The U.S. EPA's final risk mitigation decision for ten rodenticides (U.S. EPA, 2008), including cholecalciferol, were intended to protect children, pets, and wildlife from accidental poisonings. These decisions include specifications for packaging (e.g., tamper-resistance) and use practices of registered rodenticides.
 virtually insoluble in water and is likely to adsorb to sediment and suspended solids (HSDB, 2006). The substance is not predicted to cause adverse effects to aquatic wildlife (U.S. EPA, 1984). It is unlikely that vitamin D₃ would bioaccumulate in aquatic life (HSDB, 2006). Toxicity studies in birds have indicated that vitamin D₃ is of low toxicity (U.S. EPA, 1984). There have been reports of acute poisoning in domestic pets and effects appear to be similar to those of humans. Clinical signs of poisoning include depression, lethargy, anorexia, vomiting, and polydipsia and severe clinical signs include calcification of the kidneys and stomach (Mason and Littin, 2003). Internally, poisoned dogs show calcification of vascular walls, gastrointestinal hemorrhage, and myocardial necrosis (Mason and Littin, 2003). Poisoned horses exhibited leg stiffness, anorexia, weakness, recumbency and, internally, extensive mineralization of cardiovascular and other soft tissues (Mason and Littin, 2003). The U.S. EPA's final risk mitigation decision for ten rodenticides (U.S. EPA, 2008), including cholecalciferol, were intended to protect children, pets, and wildlife from accidental poisonings. These decisions include specifications for packaging (e.g., tamper-resistance) and use practices of registered rodenticides.
 substance is not predicted to cause adverse effects to aquatic wildlife (U.S. EPA, 1984). It is unlikely that vitamin D₃ would bioaccumulate in aquatic life (HSDB, 2006). Toxicity studies in birds have indicated that vitamin D₃ is of low toxicity (U.S. EPA, 1984). There have been reports of acute poisoning in domestic pets and effects appear to be similar to those of humans. Clinical signs of poisoning include depression, lethargy, anorexia, vomiting, and polydipsia and severe clinical signs include calcification of the kidneys and stomach (Mason and Littin, 2003). Internally, poisoned dogs show calcification of vascular walls, gastrointestinal hemorrhage, and myocardial necrosis (Mason and Littin, 2003). Poisoned horses exhibited leg stiffness, anorexia, weakness, recumbency and, internally, extensive mineralization of cardiovascular and other soft tissues (Mason and Littin, 2003). The U.S. EPA's final risk mitigation decision for ten rodenticides (U.S. EPA, 2008), including cholecalciferol, were intended to protect children, pets, and wildlife from accidental poisonings. These decisions include specifications for packaging (e.g., tamper-resistance) and use practices of registered rodenticides.
 vitamin D₃ would bioaccumulate in aquatic life (HSDB, 2006). Toxicity studies in birds have indicated that vitamin D₃ is of low toxicity (U.S. EPA, 1984). There have been reports of acute poisoning in domestic pets and effects appear to be similar to those of humans. Clinical signs of poisoning include depression, lethargy, anorexia, vomiting, and polydipsia and severe clinical signs include calcification of the kidneys and stomach (Mason and Littin, 2003). Internally, poisoned dogs show calcification of vascular walls, gastrointestinal hemorrhage, and myocardial necrosis (Mason and Littin, 2003). Poisoned horses exhibited leg stiffness, anorexia, weakness, recumbency and, internally, extensive mineralization of cardiovascular and other soft tissues (Mason and Littin, 2003). The U.S. EPA's final risk mitigation decision for ten rodenticides (U.S. EPA, 2008), including cholecalciferol, were intended to protect children, pets, and wildlife from accidental poisonings. These decisions include specifications for packaging (e.g., tamper-resistance) and use practices of registered rodenticides. Evaluation Question #10: Describe and summarize any reported effects upon human health from use of the netitioned substance (7U S C & 6518 (c) (1) (A) (i) 7U S C & 6518 (c) (2) (A) (i) and 7U S C & 6518
 Toxicity studies in birds have indicated that vitamin D₃ is of low toxicity (U.S. EPA, 1984). There have been reports of acute poisoning in domestic pets and effects appear to be similar to those of humans. Clinical signs of poisoning include depression, lethargy, anorexia, vomiting, and polydipsia and severe clinical signs include calcification of the kidneys and stomach (Mason and Littin, 2003). Internally, poisoned dogs show calcification of vascular walls, gastrointestinal hemorrhage, and myocardial necrosis (Mason and Littin, 2003). Poisoned horses exhibited leg stiffness, anorexia, weakness, recumbency and, internally, extensive mineralization of cardiovascular and other soft tissues (Mason and Littin, 2003). The U.S. EPA's final risk mitigation decision for ten rodenticides (U.S. EPA, 2008), including cholecalciferol, were intended to protect children, pets, and wildlife from accidental poisonings. These decisions include specifications for packaging (e.g., tamper-resistance) and use practices of registered rodenticides. Evaluation Question #10: Describe and summarize any reported effects upon human health from use of the petitioned substance (7 U.S.C. & 6517 (c) (1) (A) (i) 7 U.S.C. & 6517 (c) (2) (A) (i) and 7 U.S.C. & 6518
 Toxicity studies in birds have indicated that vitamin D₃ is of low toxicity (U.S. EPA, 1984). There have been reports of acute poisoning in domestic pets and effects appear to be similar to those of humans. Clinical signs of poisoning include depression, lethargy, anorexia, vomiting, and polydipsia and severe clinical signs include calcification of the kidneys and stomach (Mason and Littin, 2003). Internally, poisoned dogs show calcification of vascular walls, gastrointestinal hemorrhage, and myocardial necrosis (Mason and Littin, 2003). Poisoned horses exhibited leg stiffness, anorexia, weakness, recumbency and, internally, extensive mineralization of cardiovascular and other soft tissues (Mason and Littin, 2003). The U.S. EPA's final risk mitigation decision for ten rodenticides (U.S. EPA, 2008), including cholecalciferol, were intended to protect children, pets, and wildlife from accidental poisonings. These decisions include specifications for packaging (e.g., tamper-resistance) and use practices of registered rodenticides. Evaluation Question #10: Describe and summarize any reported effects upon human health from use of the apetitioned substance (7 U.S.C. & 6517 (c) (1) (A) (i) 7 U.S.C. & 6517 (c) (2) (A) (i) and 7 U.S.C. & 6518
There have been reports of acute poisoning in domestic pets and effects appear to be similar to those of humans. Clinical signs of poisoning include depression, lethargy, anorexia, vomiting, and polydipsia and severe clinical signs include calcification of the kidneys and stomach (Mason and Littin, 2003). Internally, poisoned dogs show calcification of vascular walls, gastrointestinal hemorrhage, and myocardial necrosis (Mason and Littin, 2003). Poisoned horses exhibited leg stiffness, anorexia, weakness, recumbency and, internally, extensive mineralization of cardiovascular and other soft tissues (Mason and Littin, 2003). The U.S. EPA's final risk mitigation decision for ten rodenticides (U.S. EPA, 2008), including cholecalciferol, were intended to protect children, pets, and wildlife from accidental poisonings. These decisions include specifications for packaging (e.g., tamper-resistance) and use practices of registered rodenticides.
 There have been reports of acute poisoning in domestic pets and effects appear to be similar to those of humans. Clinical signs of poisoning include depression, lethargy, anorexia, vomiting, and polydipsia and severe clinical signs include calcification of the kidneys and stomach (Mason and Littin, 2003). Internally, poisoned dogs show calcification of vascular walls, gastrointestinal hemorrhage, and myocardial necrosis (Mason and Littin, 2003). Poisoned horses exhibited leg stiffness, anorexia, weakness, recumbency and, internally, extensive mineralization of cardiovascular and other soft tissues (Mason and Littin, 2003). The U.S. EPA's final risk mitigation decision for ten rodenticides (U.S. EPA, 2008), including cholecalciferol, were intended to protect children, pets, and wildlife from accidental poisonings. These decisions include specifications for packaging (e.g., tamper-resistance) and use practices of registered rodenticides.
 humans. Clinical signs of poisoning include depression, lethargy, anorexia, vomiting, and polydipsia and severe clinical signs include calcification of the kidneys and stomach (Mason and Littin, 2003). Internally, poisoned dogs show calcification of vascular walls, gastrointestinal hemorrhage, and myocardial necrosis (Mason and Littin, 2003). Poisoned horses exhibited leg stiffness, anorexia, weakness, recumbency and, internally, extensive mineralization of cardiovascular and other soft tissues (Mason and Littin, 2003). The U.S. EPA's final risk mitigation decision for ten rodenticides (U.S. EPA, 2008), including cholecalciferol, were intended to protect children, pets, and wildlife from accidental poisonings. These decisions include specifications for packaging (e.g., tamper-resistance) and use practices of registered rodenticides.
 severe clinical signs include calcification of the kidneys and stomach (Mason and Littin, 2003). Internally, poisoned dogs show calcification of vascular walls, gastrointestinal hemorrhage, and myocardial necrosis (Mason and Littin, 2003). Poisoned horses exhibited leg stiffness, anorexia, weakness, recumbency and, internally, extensive mineralization of cardiovascular and other soft tissues (Mason and Littin, 2003). The U.S. EPA's final risk mitigation decision for ten rodenticides (U.S. EPA, 2008), including cholecalciferol, were intended to protect children, pets, and wildlife from accidental poisonings. These decisions include specifications for packaging (e.g., tamper-resistance) and use practices of registered rodenticides.
 poisoned dogs show calcification of vascular walls, gastrointestinal hemorrhage, and myocardial necrosis (Mason and Littin, 2003). Poisoned horses exhibited leg stiffness, anorexia, weakness, recumbency and, internally, extensive mineralization of cardiovascular and other soft tissues (Mason and Littin, 2003). The U.S. EPA's final risk mitigation decision for ten rodenticides (U.S. EPA, 2008), including cholecalciferol, were intended to protect children, pets, and wildlife from accidental poisonings. These decisions include specifications for packaging (e.g., tamper-resistance) and use practices of registered rodenticides.
 (Mason and Littin, 2003). Poisoned horses exhibited leg stiffness, anorexia, weakness, recumbency and, internally, extensive mineralization of cardiovascular and other soft tissues (Mason and Littin, 2003). The U.S. EPA's final risk mitigation decision for ten rodenticides (U.S. EPA, 2008), including cholecalciferol, were intended to protect children, pets, and wildlife from accidental poisonings. These decisions include specifications for packaging (e.g., tamper-resistance) and use practices of registered rodenticides.
 internally, extensive mineralization of cardiovascular and other soft tissues (Mason and Littin, 2003). The U.S. EPA's final risk mitigation decision for ten rodenticides (U.S. EPA, 2008), including cholecalciferol, were intended to protect children, pets, and wildlife from accidental poisonings. These decisions include specifications for packaging (e.g., tamper-resistance) and use practices of registered rodenticides. Evaluation Question #10: Describe and summarize any reported effects upon human health from use of the petitioned substance (7 U.S.C. & 6517 (c) (1) (A) (i) 7 U.S.C. & 6517 (c) (2) (A) (i) and 7 U.S.C. & 6518
The U.S. EPA's final risk mitigation decision for ten rodenticides (U.S. EPA, 2008), including cholecalciferol, were intended to protect children, pets, and wildlife from accidental poisonings. These decisions include specifications for packaging (e.g., tamper-resistance) and use practices of registered rodenticides. Evaluation Question #10: Describe and summarize any reported effects upon human health from use of the petitioned substance (7 U S C & 6517 (c) (1) (A) (i) 7 U S C & 6517 (c) (2) (A) (i) and 7 U S C & 6518
 The U.S. EPA's final risk mitigation decision for ten rodenticides (U.S. EPA, 2008), including cholecalciferol, were intended to protect children, pets, and wildlife from accidental poisonings. These decisions include specifications for packaging (e.g., tamper-resistance) and use practices of registered rodenticides. Evaluation Question #10: Describe and summarize any reported effects upon human health from use of the petitioned substance (7 U.S.C. & 6517 (c) (1) (A) (i) 7 U.S.C. & 6517 (c) (2) (A) (i) and 7 U.S.C. & 6518
 cholecalciterol, were intended to protect children, pets, and wildlife from accidental poisonings. These decisions include specifications for packaging (e.g., tamper-resistance) and use practices of registered rodenticides. Evaluation Question #10: Describe and summarize any reported effects upon human health from use of the petitioned substance (7 U S C & 6517 (c) (1) (A) (i) 7 U S C & 6517 (c) (2) (A) (i) and 7 U S C & 6518
 decisions include specifications for packaging (e.g., tamper-resistance) and use practices of registered rodenticides. Evaluation Question #10: Describe and summarize any reported effects upon human health from use of the petitioned substance (7 U S C & 6517 (c) (1) (A) (i) 7 U S C & 6517 (c) (2) (A) (i) and 7 U S C & 6518
 rodenticides. rodenticides. Evaluation Question #10: Describe and summarize any reported effects upon human health from use of the petitioned substance (7 U S C & 6517 (c) (1) (A) (i) 7 U S C & 6517 (c) (2) (A) (i) and 7 U S C & 6518
Evaluation Question #10: Describe and summarize any reported effects upon human health from use of the petitioned substance (7 U S C & 6517 (c) (1) (A) (i) 7 U S C & 6517 (c) (2) (A) (i) and 7 U S C & 6518
Evaluation Question #10: Describe and summarize any reported effects upon numan health from use of the petitioned substance (7 U.S.C. 8 6517 (c) (1) (A) (i) 7 U.S.C. 8 6517 (c) (2) (A) (i) and 7 U.S.C. 8 6518
(-1) (-1)
339 (m) (4)).
340 341 Redenticide containing vitamin D. can be toxic to humans when ingested in excess. Bet studies indicate
$_{342}$ that signs of toxicity can occur with ingestion of 0.5 mg/kg (20.000 III/kg) (Cannoll 2003). The oral LD ₂₂ is
$_{342}$ main signs of toxicity can occur with nigestion of 0.5 mg/kg (20,000 10/ kg) (Cannell, 2005). The oral LD50 IS
344 adult taking 176 000 000 III or 440 000 of the 400 unit vitamin De canculos (Cannoll 2003). Therefore, the
345 risk of toxicity in humans due to exposure to vitamin D ₃ rodenticides is low
346
347 In instances of chronic, low dose human poisonings, victims typically exhibit clinical symptoms of
348 vomiting, weight loss, depression, headaches, nausea, nain and intense discomfort in areas of the body
349 and irritability (Mason and Littin 2003). It was reported that a woman who ingested vitamin Deevery day.
350 for two months developed renal and mental impairment and another individual exhibited signs of

351 352 353	permanent renal damage (Mason and Littin, 2003). In fatal cases, heart and lung tissue, renal tubes, and arteries have exhibited signs of calcification (Mason and Littin, 2003).						
354 355 356 357	<u>Evaluation Question #11:</u> Describe all natural (non-synthetic) substances or products which may be used in place of a petitioned substance (7 U.S.C. § 6517 (c) (1) (A) (ii)). Provide a list of allowed substances that may be used in place of the petitioned substance (7 U.S.C. § 6518 (m) (6)).						
358 359 360 361 362	The National List allows for the use of sulfur dioxide for underground rodent control only (smoke bombs). The U.S. EPA has not registered sulfur dioxide for use as a rodenticide. However, U.S. EPA has registered rodent control smoke bombs with the active ingredients sulfur, potassium nitrate (saltpeter), and charcoal carbon. Currently registered sulfur-based smoke bomb products include:						
363 364 365	 The Giant Destroyer: Atlas Chemical Corp., P.O. Box 141, Cedar Rapids, IA, 52406 Revenge Rodent Smoke Bomb: Roxide International, P.O. Box 249, New Rochelle, NY, 10802 						
366 367 368 369 370	Ignition of the smoke bomb generates sulfur dioxide and other gasses and consumes oxygen. The sulfur dioxide generated by these products is synthetic. Although some marketing information ¹ indicates that rodent control smoke bombs cause death by asphyxiation (e.g., depriving the rodents of oxygen), the product labels do not indicate this mode of action and note that the product produces toxic fumes.						
371 372 373 374	Sulfur-based smoke bombs may only be used in underground burrows and not for above ground baiting. The use of additional pest control measures would be required in order to control rodents dwelling above ground.						
375 376 377 378 379	Castor bean oil has been made into a pellet that can be used in smaller gardens to kill rodents. Disadvantages of this method include a high amount of labor required to upkeep the application of the pellets in the tunnels. These pellets can be dangerous because they can poison household pets. Castor oil can also be sprayed.						
380 381	Currently manufactured products containing castor oil:						
382 383 384	 Dr. T Whole Control Mole Repellent: Dr. T's Nature Products, P.O. Box 682, Pelham, GA 31779 MoleMax Mole and Vole Repellent: Bonide Products Inc., 6301 Sutliff Rd., Oriskany, NY 13424 						
385 386	Evaluation Question #12: Describe any alternative practices that would make the use of the petitioned substance unnecessary (7 U.S.C. § 6518 (m) (6)).						
387 388 389 390 391 302	One suggestion for reducing populations of tunnel dwelling rodents is to place rotten eggs in the tunnels or to use animal scents, such as urine, to deter pests (ATTRA, 2010a). Hair has also been suggested as a deterrent of rodents (ATTRA, 2010a). It is also important to remove weeds and other potential food sources as well as encourage good sanitation and cleanliness practices (ATTRA, 2010a).						
 392 393 394 395 396 397 	Planting repellant plants have been utilized as a non-synthetic method for controlling gopher populations. These plants include castor bean, daffodils, squill, and euphorbia (ATTRA, 2010a). Gophers should be removed from the area prior to planting, which can be difficult to achieve. If all animals are not removed, the gophers will be trapped inside.						
 398 399 400 401 402 	A majority of organic farmers rely on trapping for some level of rodent control. In order to maintain efficacy, trapping should be done on a daily basis and especially during critical times in the life cycle of the rodent and the cropping season (ATTRA, 2010b). The removal of food sources and shelter can deter rodents from farms.						

¹ For example: http://www.get-revenge.us/molecontrol.html; http://www.wholesale-garden-supplies.com/product.php?productid=22734&cat=0&page=1;

403 There are many types of traps and barriers that are commonly used for rodent control. The use of live 404 traps is common for capturing ground squirrels. These traps include a model called a 'repeating trap' that can catch a whole colony from one baiting. One advantage of using traps is that the level of precision is 405 higher because the exact tunnels can be followed. A second advantage is cost as traps are less expensive. 406 407 Disadvantages of traps include the necessity of handling the animals that are caught, whether alive or 408 dead. Ground squirrels have been found to carry bubonic plague and rabies and cases have been reported 409 after humans reported contact. Traps also require regular monitoring and additional skill to set them. 410 Examples of barriers include fencing and "gopher cages" or wire baskets placed in a hole at planting time to keep gophers out of the root zone. Because of their burrowing nature, gophers and ground squirrels can 411 412 defeat most fences and the caging idea is confined to use on small acreages with valuable perennial plants 413 (ATTRA, 2010b). 414 415 Flooding out tunnels using large amounts of water has been used in some instances (ATTRA, 2010a). This practice is not effective, however, on sloped ground or when rodents other than gophers have been the 416 417 source of infestation. This practice also uses a large amount of water and can create soil erosion. It may 418 also be unfeasible to transport water to the location. 419 An increased population of predators is an effective control option. The corn snake (Elaphe guttata) and the 420

- 421 rat snake (Elaphe obsoleta) are two snakes on the United States mainland that feed on rodents, such as mice,
- 422 rats, and squirrels (ATTRA, 2010b). Note that both species also feed on small birds, so a key disadvantage
- 423 to this method is that chicks and eggs might be at risk as well as rodents. Domestic cats can provide long-
- 424 term control, but are known to prey on birds (ATTRA, 2010b). Over 95 percent of the diet of barn owls
- 425 usually consists of small mammals, including rodents. Each barn owl may consume about one or two
- 426 rodents per night. Per year, a nesting pair and their young can eat more than 1,000 rodents. Barn owls will
- 427 commonly use nest boxes. This alternative would certainly not be as feasible as the use of vitamin D_3
- 428 pellets and bait blocks, but could have effective results. 429

References 430

- 431
- ATTRA, 2010a, Organic Integrated Vertebrate Management. Retrieved on November 20, 2010 from 432
- http://attra.ncat.org/attra-pub/PDF/vertebrate.pdf#xml=http:// 433
- 434 search.ncat.org/texis/search/pdfhi.txt?query=Cholecalciferol&pr=ATTRA2010&prox=page&rorder=500&
- 435 rprox=500&rdfreq=500&rwfreq=500&rlead=500&rdepth=0&sufs=0&order=r&cq=&id=4cf8cf398a>
- 436
- 437 ATTRA, 2010b, National Sustainable Agriculture Information Service. Retrieved November 20, 2010 from 438 http://attra.ncat.org/calendar/question.php/2006/03/20/what_rodenticides_are_acceptable_for_use
- 439
- 440 Bell Laboratories Inc., 2010. Quintox Label. Retrieved January 5, 2011 from
- 441 http://www.doyourownpestcontrol.com/SPEC/LABELS/quintox_mouseseed.pdf
- 442
- Canadian General Standards Board, Dec. 2009. Organic Production Systems Permitted Substances List. 443
- 444 Retrieved November 18, 2010 from http://www.tpsgc-pwgsc.gc.ca/cgsb/on_the_net/organic/index-445 e.html
- 446
- 447 Cannell, J., 2009. The Truth About Vitamin D Toxicity. Retrieved November 20, 2010 from
- http://www.vitamindcouncil.org/vitaminDToxicity.shtml 448
- 449
- 450 Holick, M. 1999. "Evolution, Biologic Functions, and Recommended Dietary Allowances of Vitamin D." in
- 451 Holick, M. (ed.), 1999. Vitamin D: Physiology, Mollecular Biology, and Clinical Applications. Humana 452 Press, Inc., Totowa, NJ., pp. 1-16.
- 453
- 454 HSDB, 2006. Cholecalciferol. National Library of Medicine. Retrieved November 17, 2010 from
- 455 http://toxnet.nlm.nih.gov/cgi-bin/sis/search/a?dbs+hsdb:@term+@DOCNO+820
- 456

457 458 459 460	Ikekawa, N. and Ishizuka, S., 1993. Molecular structure and biological activity of vitamin D metabolites and their analogs. In: Molecular Structure and Biological Activity of Steroids. Boca Raton: CRC Press, pp. 293-316.
461 462 463 464	Kegley, S.E., Hill, B.R., Orme, S., and Choi, A.H., 2010. PAN Pesticide Database (Pesticide Action Network): Cholecalciferol. Retrieved November 17, 2010 from http://www.pesticideinfo.org/Detail_Chemical.jsp?Rec_Id=PC34709
465 466 467 468	Marshall, E., 1984. Cholecalciferol: A Unique Toxicant for Rodent Control. Proceedings Eleventh Vertebrate Pest Conference. Retrieved November 18, 2010 from http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1021&context=vpc11
469 470 471	Mason, G. and Littin, K. E., 2003. The Humaneness of Rodent Pest Control. J. of Animal Welfare. Volume 12, Number 1, February 2003, pp. 1-37(37).
472 473 474	Mayo Clinic, 2010. Vitamin D. Retrieved November 17, 2010 from http://www.mayoclinic.com/health/vitamin-d/NS_patient-vitamind
475 476 477	Morrow, C., 2001. Cholecalciferol Poisoning. Veterinary Medicine. Retrieved November 17, 2010 from http://www2.aspca.org/site/DocServer/toxbrief_1201.pdf?docID=127
478 479 480	NOAA, 2010. Cameo Chemicals: Vitamin D ₃ Factsheet. Retrieved November 17, 2010 from http://cameochemicals.noaa.gov/chemical/21226
481 482 483	Norman, A, 2000. Vitamin D and Milk. Retrieved November 17, 2010 from http://vitamind.ucr.edu/milk.html
484 485 486 487	NPIRS, 2010. National Pesticide Information Retrieval System, Maintained by Purdue University with data obtained from the U.S. Environmental Protection Agency's Pesticide Product Information System (PPIS). Retrieved December 23, 2010 from http://ppis.ceris.purdue.edu/htbin/rnamset.com
488 489 490	OMRI, 2010. Retrieved December 23, 2010 from http://www.omri.org/simple-opl-search/results/Cholecalciferol
491 492 493	PPIS, 2010. Pesticide Products. Retrieved December 23, 2010 from http://ppis.ceris.purdue.edu/htbin/epaprod.com
494 495 496	University of California, Riverside, 1999. History of Vitamin D ₃ . Retrieved November 18, 2010 from http://vitamind.ucr.edu/history.html
497 498 499	U.S. EPA, 1984. Cholecalciferol (Vitamin D ₃)- Chemical Profile. Retrieved November 18, 2010 from http://pmep.cce.cornell.edu/profiles/rodent/rodent_A_L/cholecalciferol/cholecal_prf_1284.html
500 501 502	U.S. EPA, 2004. Inert Ingredients Ordered by CAS Number-List 4B, Office of Pesticide Programs. Retrieved November 18, 2010 from www.epa.gov/opprd001/inerts/inerts_list4Bcas.pdf
503 504 505	U.S. EPA, 2008. Risk Mitigation Decisions for Ten Rodenticides. Retrieved November 19, 2010 from http://www.epa.gov/pesticides/reregistration/rodenticides/
506 507 508 509	U.S. EPA. 2010. Registration Review: Conventional Cases Schedule: 2010-2013. U.S. Environmental Protection Agency, June 7, 2010. Retrieved November 17, 2010 from http://www.epa.gov/oppsrrd1/registration_review/2010-13-conventional.pdf
510 511	U.S. Department of Agriculture, Agricultural Marketing Service, 7 CFR Part 205, Final Rule. Retrieved November 20, 2010 from

- http://ecfr.gpoaccess.gov/cgi/t/text/textidx?c=ecfr&sid=1c17b79cd94d4df8eaa7cd46f028ada8&rgn=div5 &view=text&node=7:3.1.1.9.32&idno=7 512
- 513

514