Crops

	Identification of Petitio	oned Substance
Chemical Name: See below.	9	Other Products: See below.
	10	
Other Names: See below.	11	CAS Number: See below.
	12	
Trade Names: See below.	13	Other Codes: See below.
Micronutrients:		
Macro and micro nutriants a	re assential components for t	plant growth ¹ . The most important
		assium (K) if carbon (C), oxygen (O),
		(Mg) and sulfur (S) are other
macronutrients, also called se		(ing) and bandi (b) are buter
inter official entry also cance se	for the second s	
The list of micronutrients var	ies. A short list generally inc	ludes six components: boron (B),
	e i	b), and zinc (Zn). A different version
		e (Cl). Yet a long list, after items such as
1	. ,	ould potentially include those eight
		i), selenium (Se), and chromium (Cr),
	. ,	Cr. This variability results from the
		ent natural supply), weather condition,
	, , , , , , , , , , , , , , , , , , , ,	ese deficiency was the most common
		ncies were observed on some soils in
		for soybean, and boron deficiency for
alfalfa were common problen	ns observed in Indiana. Zinc,	boron and iron deficiencies for pecans
were common problems enco	ountered in Georgia.	
		However, with respect to the minor
		these two components from natural
<i>y</i> 1	5 5	Phytotoxicity ² associated with the
excessive supply of these two	components is more commo	n.
~		
		, a nutrient at trace levels but a toxic
		beneficial and toxic is very narrow.
		$0.10 \text{ mg Se kg}^{-1}$ (dry weight, DW) in
torage teed. The feed become		g kg ⁻¹ of selenium or higher. Plants
		1 1
	_	plants growing in seleniferous, alkaline
soils derived from the weathe	ering of seleniferous rocks an	d shales, such as those areas in
soils derived from the weathe Kesterson Reservoir, Californ	ering of seleniferous rocks an ia. It is true that selenium sa	

¹ *Essential* means that plants may develop deficiency symptoms and yields may be reduced when the available nutrient components are insufficient. *Macro-* and *micro-* are relevant to the demand but not to the supply. Plants require these *macronutrients* in large amounts and *micronutrients* relatively in minor or trace amounts. There are also terms of *ultramicronutrient* and *nano*nutrient.

² *Phytotoxicity* is a term used to describe the degree of toxic effect by a compound on plant growth. Such damage may be caused by a wide variety of compounds, including trace metals, pesticides, salinity, phytotoxin or allelopathy.

Technical Evaluation Report

48 49 50 51 52 53	selenium content ³ . However, the nutritional value of selenium to plants is debatable. There is no strong evidence to suggest that plants are actively taking up selenium from soil as nutrients (Terry et al., 2000; Ellis and Salt, 2003; Germ and Stibilj, 2007; Zhu et al., 2009). One of the probable mechanisms is the uptake of selenium by plants as sulfur due to the similarity between selenium ions and sulfur ions (such as SeO_4^{2-} and SO_4^{2-}).
54 55 56 57	Nickel is one of ultra-micronutrients or nano-nutrients. Plants contain 0.1 μ g g ⁻¹ (DW) or less of nickel but show toxicity at 10-50 μ g Ni g ⁻¹ (Dalton et al., 1988; Kramer et al., 1997). Cobalt and chromium are proposed to be micronutrients but their application is far less than the application of other micronutrients.
58 59 60	Micronutrients in general may include but not necessarily be limited to the following substances.
61 62 63 64	Boron (B): Borax (Na ₂ B ₄ O ₇ · 10H ₂ O), sodium tetraborate pentahydrate (Na ₂ B ₄ O ₇ · 5H ₂ O, CAS # 12179-04-3, Granubor 2) ⁴ , disodium octaborate tetrahydrate (Na ₂ B ₈ O ₁₃ · 4H ₂ O, CAS # 12280-03-4, Solubor), boric acid (H ₃ BO ₃)
65 66 67 68 69	Copper (Cu): Copper oxide (CuO, CAS # 1317-38-0, Tiger Copper 7%), cuprous oxide (Cu ₂ O), copper sulfate pentahydrate (CuSO ₄ · 5H ₂ O, CAS #, Super Sulphates), copper sulfate monohydrate (CuSO ₄ · H ₂ O), cupric ammonium phosphate (Cu(NH ₄)PO ₄ · H ₂ O), copper hydroxide, copper chelates (Na ₂ CuEDTA, NaCuHEDTA)
70 71 72 73 74 75	Iron (Fe): Ferric sulfate (Fe ₂ (SO ₄) ₃ ·9 H ₂ O), ferrous sulfate (FeSO ₄ · xH ₂ O), ferrous ammonium phosphate (Fe(NH ₄)PO ₄ ·H ₂ O), ferrous ammonium sulfate (FeSO ₄ · (NH ₄) ₂ SO ₄ ·6 H ₂ O), hydroxyl(oxo)iron (Fe ₃ H ₂ O ₄ , CAS # 73905-81-4, Tiger Iron 22%), iron chelates (FeEDTA, NaFeEDTA, NaFeHPDTA, NaFeEDDHA, NaFeDTPA, FeHEDTA, FeEDDHA)
76 77 78 79	Manganese (Mn): Manganese sulfate (MnSO ₄ · 4H ₂ O,), manganous oxide (MnO), manganese oxide (MnO ₂ , CAS # 1344-43-0, Tiger Manganese 15%), potassium permanganate (KMnO ₄)
80 81 82 83 84	Molybdenum (Mo): Sodium molybdate (Na2MoO4), molybdic acid, molybdenum oxide, ammonium molybdate ((NH4)6M07O26), molybdenum trioxide (MoO3), molybdenum dioxide (MoO2)
85 86 87 88	Zinc (Zn): Zinc oxide (ZnO, CAS # 1314-13-2, Tiger Zinc 18%), zinc sulfate (ZnSO ₄ , ZnSO ₄ · 2H ₂ O, ZnSO ₄ · NH ₃ -complex), zinc sulfide, zinc carbonate, zinc chelate (Zn-EDTA, Zn-NTA, Na ₂ ZnEDTA, NaZnTA, NaZnHEDTA), Zn-lignosulfonate (Fert-All Zinc), zinc polyflavonoids
89 90 91 92	Nickel (Ni): Nickel sulfate (NiSO4 · 6H2O, CAS #10101-98-1 heptahydrate), nickel carbonate (NiCO3, CAS # 3333-67-3), nickel hydroxide

³ Based on the analyses of mineral and trace element contents in cereals, fruits and vegetables in Finland, and by comparing the results with the similar results obtained 30 years ago, Ekholm et al. (2007) found that the selenium content of foods increased by about 1,600% while the contents of other elements such as Zn, Cu, Fe, Co, and Ni decreased by 25-45% from the 1970s to the 2000s. Ekholm et al. (2007) ascribed the increase in selenium content to the use of selenium-supplemented fertilizers.

⁴ Trade names used here are solely for the purpose of providing some examples. It is not implied in any way that these products are recommended.

	Technical Evaluation Report	Micronutrients	Crop Production
93 94	Cobalt (Co): Cobalt comp	ounds (Information is limited).	
95 96	Chromium (Cr): Chromiu	um compounds (Information is limited).	
97	Some micronutrients are chelated	compounds such as chelates of citric acid, lignosulfor	nic acid,
98		droxyethylenediaminetriaacetic acid), EDTA	
99 100	(ethylenediaminetetraacetic acid),	and DTPA (diethylenetriaminepentaacetic acid).	
100 101	Applying micronutrients is a very	common agricultural practice. Extensive information	n ie
101		pplication of micronutrients is discussed by the exten	
103	· · · · · · · · · · · · · · · · · · ·	emson University, Michigan State University, Ohio St.	
104		niversity of Florida IFAS, University of Guelph (<u>van S</u>	
105		<u>versity of Hawaii-Manoa, University of Maryland</u> , and	
106 107	<u>University of Nebraska-Lincoln</u> . available information.	This list is not exhaustive but just a quick example of v	widely
107	available information.		
109	Previous Technical Reports:		
110			
111 112	1995. TAP (Technical Advisory P	anel) Review of Micronutrient Sprays.	
112	Chara	cterization of Petitioned Substance	
	Chara	cterization of retitioned Substance	
114 115	Composition of the Substance:		
116	composition of the Substance.		
117		nly compounds of B, Cu, Fe, Mn, Mo, and Zn, as well	
118		ese are simple inorganic compounds such as oxides ar	
119 120	sulfates, as well as some carbonate compositions of these compounds	es. Some compounds are chelates such as Fe-EDTA. T	Example
120	compositions of these compounds	are instea above.	
122	Soil contains iron-aluminum-silica	ate minerals and other minerals. Iron, manganese, cop	oper, zinc,
123		ninerals are held tightly in crystal structure and are m	
124		nents within minerals are not considered as plant nutr	
125 126	and make these components avail	ctivities very slowly release these components from n able for plants	ninerals
120	and make these components avail		
128		l in compound forms rather than in elemental forms.	
129		as copper sulfate or copper oxide are used instead of	
130 131		boron or copper, are used to refer these compounds for late dissolved ions as nutrients, such as BO ₃ ³⁻ , Cl ⁻ , Cu ²⁻	
131		. Even if elemental copper is applied, it has to be conv	
133		ted by plants. On the other hand, no matter in what fo	
134		components will convert to the respective ionic form	
135		rmodynamically at the normal conditions of soil and s	surface
136 137	water.		
137	Traditionally iron, manganese, co	pper, zinc and boron are applied as sulfates. Recently	' they
139		bonates of these elements are not very soluble. Both o	
140		ickel carbonate (solubility: 0.093 g L ⁻¹) might be used	
141		kel in nickel carbonate is much less available to plants	
142 143		xtremely lower solubility than the solubility of nickel commonly synthesized and might not be widely avai	
143		very soluble and commonly synthesized, are not listed	
145		lly prohibits use of the nitrates and chlorides of micro	
146	in organic production.		

147					
148	Properties of	the Substance:			
149					
150	Most of the co	mpounds are w	hite granules or powders	at room temperatui	re. Copper
151	compounds m	ay be green (Cu	SO ₄) or red (CuO).		
152					
153	Some compou	nds are chelates	such as Fe-EDTA. The se	olubility of these co	mpounds is usually in
154			\approx chlorides > sulfates >>		
155					
156	Nickel is a tra	nsition metal in	group VIII of the periodic	table, close to Mn,	Co, Fe, Cu and Zn. Its
157			normal environmental co		
158		· · ·	sical property, and chemi		0
159			4-1 and Table 4-2 of ATS		
160			in 11 th Report on Carcino		
161	Nickel).		F		<u>r</u>
162	<u>- ((((((((((((((((((((((((((((((((((((</u>				
162		Nickel	Solubility (water)	Color	
164		Oxide	insoluble (0.001 g L ⁻¹)	green to black	
		Carbonate	, e	-	
165		Sulfides	insoluble (0.093 g L^{-1})	light green	
166			insoluble (0.52 gL ⁻¹)	green to black	
167		Hydroxide	insoluble	green to black	
168		Acetate	soluble	dull-green	1
169		Sulfate	soluble (293 g L ⁻¹)	yellow, green or b	lue
170		Chloride	soluble (642 g L ⁻¹)	yellow	
171		Nitrate	soluble (2,385 g L ⁻¹)		
172					
173			black crystalline form tha		
174		•	en 1981). The nickel conte		
175	-		nore stable green nickel o		
176			ckel nitrate usually exist a	5	
177	nickel cyanide	e, and nickel sulf	amate are in the form of a	a tetrahydrate," (<u>AT</u>	<u>SDR-Ni</u> , 2005).
178					
179					
180	Specific Uses	of the Substanc	<u>e</u> :		
181					
182	Compounds a	re used as micro	onutrients for plants.		
183	-		-		
184	Approved Leg	gal Uses of the S	Substance:		
185		-			
186	Relevant section	ons of 7 CFR 205	5.601 – "Synthetic substan	ces allowed for use	in organic crop
187		re quoted below			0 1
188	I	1			
189	"(i) As	s plant or soil an	nendments.		
190	0) 14		nts not to be used as a	defoliant, herbicide	, or desiccant
191			from nitrates or chloride		
192			amented by testing.	are not unowed.	con acticicity
192			e boron products.		
195 194				r cilicator of zing	connor iron
194 195		• •	es, carbonates, oxides, o		copper, non,
		manga	nese, molybdenum, selen	ium, and cobalt.	
196	Nielestie	naludad in 7 CP	P = O(1/2)/(2)/(2) = 0		
197	inickel is not i	ncluded in / CFI	R 205.601(j)(6)(ii) currently	у.	
198	A	C 1 t			
199	Action of the	Substance:			

200	
201	Boron (B): Boron plays an important role in the movement and metabolism of sugars in
202	the plant and synthesis of plant hormones and nucleic acids. It also functions in
203	lignin formation of cell walls, germination of pollen grains, and growth of pollen
204	tubes.
205	
206	Copper (Cu): Copper is a component of enzymes, some of which are important to lignin
207	formation in cell walls. It is also involved in photosynthesis. Without copper all
208	crops fail to grow.
209	
210	Iron (Fe): Iron is a constituent of many organic compounds in plants. Iron is involved in
211	photosynthesis, respiration, chlorophyll formation, and many enzymatic reactions.
212	
213	Manganese (Mn): Manganese is a component of enzymes and is also involved in
214	photosynthesis and root growth. Additionally, it is involved in nitrogen fixation.
215	
216	Molybdenum (Mo): Molybdenum is involved in nitrogen fixation (conversion of N ₂ to
217	NH_4^+) and nitrification (conversion of NH_4^+ to NO_3^-).
218	
219	Zinc (Zn): Zinc is a component of many organic complexes and DNA protein. It is also an
220	important enzyme for protein synthesis. Also, zinc is involved in growth hormone
221	production and seed development, and is involved in chlorophyll synthesis.
222	
223	Cobalt (Co): Cobalt is required by nitrogen-fixing microorganisms and is essential for N-
224	fixing legumes.
225	
226	Chromium (Cr): Information is limited.
227	
228	Nickel (Ni): Urease is an enzyme that catalyzes the hydrolysis of urea into carbon dioxide
229	and ammonia. Nickel is required by the urease enzyme in plants, which seems to
230	be the only function of nickel in plants (Bai et al., 2006; Tejada-Jimenez et al., 2009;
231	Hansch and Mendel, 2009; <u>University of Georgia</u>).
232	
233	Status
234	
235	Historic Use by Organic Growers:
236	
237	Deficiency of micronutrients was recognized before the NOP started in the 1990s (e.g. Berger,
238	1962). Compounds of boron, copper, iron, manganese, and zinc are listed in OMRI as
239	micronutrients. Recently, deficiency of nickel was investigated (Bai et al., 2006). Ni compounds
240	are not listed in OMRI currently.
241	
242	U.S. Department of Agriculture:
243	
244	Soluble boron products, sulfates, carbonates, oxides, or silicates of zinc, copper, iron, manganese,
245	molybdenum, selenium, and cobalt are allowed in organic crop production (7 CFR 205.601(j)(6)).
246	Nickel is not included.
247	
248	U.S. Department of Health and Human Services: See below.
249	
250	U.S. Environmental Protection Agency: See below.
251	
252	U.S. Food and Drug Administration: See below.
253	

254	International: See below.
255	
256	The Agency for Toxic Substances and Disease Registry (ATSDR), based in Atlanta, Georgia, is a
257	federal public health agency of the U.S. Department of Health and Human Services (DHHS). The
258	ATSDR prepared the toxicological profiles (<u>ATSDR</u>) of nickel and other components in
259	accordance with guidelines developed by the ATSDR and the U.S. Department of Environmental
260	Protection (EPA). The following is quoted from the section of "8. Regulations and advisories" in
261	the nickel profile (<u>ATSDR-Ni</u> , 2005).
262	
263	"The Department of Health and Human Services (NTP 2002) has determined that
264	metallic nickel may reasonably be anticipated to be a carcinogen and that nickel
265	compounds are known to be human carcinogens. Similarly, IARC classified
266	metallic nickel in group 2B (possibly carcinogenic to humans) and nickel
267	compounds in group 1 (carcinogenic to humans). EPA has classified nickel
268	refinery dust and nickel subsulfide in Group A (human carcinogen) (IRIS 2005).
269	Other nickel compounds have not been classified by the EPA."
270	
271	International, national, and state guidelines and regulations regarding exposure to nickel and its
272	compounds are detailed in 3-page "Table 8-1 Regulations and Guidelines Applicable to Nickel
273	and Nickel Compounds", of the profile of nickel (<u>ATSDR-Ni</u> , 2005), and are listed in the <u>11th</u>
274	<u>Report on Carcinogens</u> – <u>Nickel Compounds and Metallic Nickel</u> . Most of the regulations are not
275	directly related to the potential usage of nickel compounds (nickel sulfate) as micronutrients to
276	plants. Some regulations are listed below.
277	
278	Drinking water guideline of nickel is 0.02 mg L ⁻¹ by WHO, but 0.1 mg L ⁻¹ by U.S. EPA and 0.1 mg
279	L ⁻¹ in bottled water by U.S. FDA. Nickel is GRAS (generally recognized as safe) as a direct
280	human food ingredient with no limitation other than current good manufacturing practices, as
281	given by U.S. FDA.
282	
283	EPA – Clean Water Act
284	Biosolids Rule: Ceiling concentration of nickel (type not specified) for land application = 420
285	mg/kg.
286	Effluent Guidelines: Nickel and nickel compounds listed as "Toxic Pollutants".
287	Water Quality Criteria: Based on fish/shellfish and water consumption = $610 \mu g/L$ (nickel,
288	type not specified); based on fish/shellfish consumption only = $4,600 \mu g/L$ (nickel, type not specified)
289	not specified).
290 201	EPA Comprehensive Environmental Response Compensation and Liphility Act
291 292	EPA – Comprehensive Environmental Response, Compensation, and Liability Act Reportable Quantity (RQ) = 100 lb (nickel, nickel ammonium sulfate, nickel chloride, nickel
292	nitrate, nickel sulfate); 10 lb (nickel carbonyl, nickel cyanide, nickel hydroxide).
293	intrate, incker sunate), 10 10 (incker carbonyi, incker cyanide, incker nydroxide).
294	EPA – Emergency Planning and Community Right-To-Know Act
295	Toxics Release Inventory: Listed substances subject to reporting requirements (nickel, nickel
290	compounds, nickel ammonium sulfate, nickel carbonyl, nickel chloride, nickel cyanide,
298	nickel hydroxide, nickel nitrate, nickel sulfate).
299	Threshold Planning Quantity (TPQ) = 1 lb (nickel carbonyl).
300	Reportable Quantity (RQ) = 10 lb (nickel carbonyl).
301	Reportable Quantity (RQ) 10 to (fileker carboliyi).
302	EPA – Resource Conservation and Recovery Act
302 303	Listed Hazardous Waste: Waste codes in which listing is based wholly or partly on substance
303	- P073, P074, F006
305	Listed as a Hazardous Constituent of Waste (nickel, nickel compounds, nickel carbonyl,
306	nickel cyanide)
307	

308	FDA
309	The color additives ferric ammonium ferrocyanide and ferric ferrocyanide may contain nickel
310	at levels no greater than 200 ppm.
311	Menhaden oil may contain nickel at concentrations not to exceed 0.5 ppm.
312	
313	OSHA
314	Permissible Exposure Limit (PEL) = 1 mg/m^3 (metallic nickel and compounds other than
315	nickel carbonyl); 0.001 ppm (0.007 mg/m^3) (nickel carbonyl).
316	
317	Evaluation Questions for Substances to be used in Organic Crop or Livestock Production
318	
319	Evaluation Question #1: Is the petitioned substance formulated or manufactured by a
320	chemical process? (From 7 U.S.C. § 6502 (21).)
321	
322	Micronutrients occur naturally in soil, as given below in Question #3. On the other hand,
323	commercial micronutrients are generally manufactured as by-products or intermediate products
324	of metal mining and processing industries. Sulfates are manufactured by reacting relevant
325	metals or oxides with sulfuric acid. For example, copper "shot" is dissolved in dilute sulfuric
326	acid to make copper sulfate (<u>Copper.ORG</u>). This dissolution is a chemical process since elemental
327	copper Cu(0) is oxidized to cupric ions Cu(II). An oxidation is a chemical reaction during which
328	electron transfer has occurred.
329	
330	Elemental nickel is primarily extracted and refined from two different ores, lateritic and sulfidic.
331	"Lateritic ores are normally found in tropical climates where weathering, with time, extracts and
332	deposits the ore in layers at varying depths below the surface. Lateritic ores are excavated using
333	large earth-moving equipment and are screened to remove boulders. Sulfidic ores, often found in
334	conjunction with copper-bearing ores, are mined from underground," (<u>World Bank.Nickel</u>).
335	Laterites are mainly nickeliferous limonite: (Fe, Ni)O(OH) and garnierite (a hydrous nickel
336	silicate): (Ni, Mg) ₃ Si ₂ O ₅ (OH). Sulfidic ores are magmatic sulfide deposits where the principal ore
337	mineral is pentlandite: (Ni, Fe) ₉ S ₈ .
338	
339	By using different processing (<u>World Bank.Nickel</u>), nickel matt is produced. "Fluid bed
340	roasting", "chlorine-hydrogen reduction", "carbonyl processing" and other processes are used to
341	produce high-purity nickel pellets. Nickel sulfate can be manufactured by dissolving nickel
342	metal in sulfuric acid. Elemental nickel Ni(0) is converted to nickel ions Ni(II) in the chemical
343 344	reaction.
	Limeaulfonates (limin sulfonate, or sulfonated limin) are water caluble anionic nalvalastraliste
345 346	Lignosulfonates (lignin sulfonate, or sulfonated lignin) are water-soluble anionic polyelectrolyte polymers, byproducts from the production of wood pulp using sulfite pulping. By 7 CFR 205.601
340 347	(j)(4), lignin sulfonate is a chelating agent. The nickel in nickel lignin sulfonate is nickel ion
347 348	Ni(II).
348 349	NI(II).
350	The production, import/export, use and disposal of nickel metal are substantially (8 pages)
351	described in Section 5 of <u>ATSDR-Ni</u> (2005).
352	$\frac{1}{10000000000000000000000000000000000$
352	Evaluation Question #2: Is the petitioned substance formulated or manufactured by a process
353	that chemically changes the substance extracted from naturally occurring plant, animal, or
355	mineral sources? (From 7 U.S.C. § 6502 (21).)
356	
357	Plant micronutrients are a collection of various kinds of substances. Some micronutrients such as
358	copper sulfate (chalcanthite, $CuSO_4 \cdot 5H_2O$) and zinc carbonate (smithsonite, $ZnCO_3$) exist as
359	natural minerals. After physical processing such as breaking and grinding, these natural
360	minerals might be used as micronutrients. Some micronutrients such as copper chelates and

minerals might be used as micronutrients. Some micronutrients such as copper cher
 nickel sulfate are not found in naturally occurring plant, animal, or mineral sources.

362	
363	Most nutrient-bearing minerals, such as sphalerite (Zn,Fe)S, nickeliferous limonite(Fe, Ni)O(OH),
364	(Ni, Mg) ₃ Si ₂ O ₅ (OH), and minerals listed in Question #3, are not soluble or very slightly soluble in
365	water. As mentioned above in Question #1, natural minerals are processed by physical and
366	chemical processes for making water soluble micronutrients. The manufactured products such as
367	nickel sulfate are different from the naturally-occurring minerals such as nickeliferous limonite
368	(Fe, Ni)O(OH).
369	
370	Most micronutrients are common chemical compounds and widely available commercially such
371	as from Fisher Scientific, Mallinckrodt, etc.
372	as nonr i isiki scientine, iviannekiout, etc.
372	Evaluation Question #3: Is the petitioned substance created by naturally occurring biological
374	processes? (From 7 U.S.C. § 6502 (21).)
375	processes: (110m 7 0.3.e. 9 0502 (21).)
376	Minerals in rock, after weathering, erosion, microbiological activities, and anthropogenic
370	processes, undergo changes that cause the formation of secondary minerals and the
378	redistribution of materials in different areas. Soil is naturally derived from parent rock and is a
379	complex mixture of primary minerals, altered minerals, redistributed materials, and other
380	materials after various physical, microbiological, and anthropogenic processes in a very long time
381	during which components in minerals are released as plant micronutrients. As given above in
382	the section of "Composition of the Substance", weathering and microbiological activities very
383	slowly release these components from minerals and make these available as plant micronutrients.
384	
385	The following is quoted from "Rocks for Crops" (van Straaten, 2002).
386	
387	"Natural abundances of micronutrients are closely linked to rock types. For
388	example, igneous ultramafic and mafic rocks (pyroxenites, basalts) contain
389	generally higher amounts of Cu, Co, Fe, and Mn than silica-rich granites. Several
390	sediments are enriched in micronutrients; for example black shales contain
391	elevated concentrations of boron and other trace elements. In general, basalts and
392	shales are rock types with abundant micronutrient elements.
393	
394	The highest concentrations of micronutrient elements found in rock-forming
395	minerals.
396	• Boron occurs in tourmaline, in clay minerals and evaporate salts (borax,
397	colemanite , kernite, ulexite) in desert playas,
398	• Chlorine is the primary component of common salt, halite (NaCl), and
399	sylvite (KCl),
400	 Cobalt is common, in small amounts, in ferromagnesian silicates substituting
401	for Fe, or associated with Mn oxides, or in sulfides, carbonates, and in marine
402	Mn-nodules,
403	• Copper is a component in the sulfides chalcopyrite (CuFeS ₂), bornite
404	(Cu ₅ FeS ₄), chalcocite (Cu ₂ S), or occurs as carbonates (malachite Cu ₂ (OH) ₂ CO ₃
405	or azurite $Cu_3(OH)_2(CO_3)_2$,
406	• Iron occurs as constituent of certain silicates, and is the main metal
407	compound in the Fe-oxides hematite, magnetite, goethite/limonite, as well
408	as in the sulfides (mainly pyrite FeS_2),
409	• Manganese occurs mainly as oxides (pyrolysite MnO ₂ , hausmannite Mn ₃ O ₄ ,
410	manganite MnOOH), and less abundantly, as Mn-carbonates and in Mn-
411	silicates,
412	 Molybdenum occurs as sulfide (MoS₂), and more rarely as molybdite (MoO₃)
413	or as powellite (CaMoO ₄) in hydrothermal veins,
414	 Zinc occurs as sulfide ZnS, carbonate (smithsonite ZnCO₃) or, in small
415	amounts, in magnetite and silicate."
	·····

421

424

417 These components in the parent rocks may not be available to plants if they are not soluble in

water. After weathering and other alteration processes including microbiological activities, these
 components in parent rock are transferred to "micronutrients" which are available for plants to
 assimilate.

422 <u>Evaluation Question #4:</u> Is there environmental contamination during the petitioned 423 substance's manufacture, use, misuse, or disposal? (From 7 U.S.C. § 6518 (m) (3).)

The following is quoted from <u>World Bank.Nickel</u> about the environmental contamination during the manufacture of nickel metal.

427 428

429

441

450 451

452

467

470

"Waste Characteristics

430 Air Emissions Sulfur dioxide (SO2) is a major air pollutant emitted in the roasting, smelting, and converting of sulfide ores. (Nickel sulfide concentrates contain 6-431 432 20% nickel and up to 30% sulfur.) SO₂ releases can be as high as 4 metric tons (t) 433 of sulfur dioxide per metric ton of nickel produced, before controls. Particulate emission loads for various process steps include 2.0-5.0 kilograms per 434 435 metric ton (kg/t) for the multiple hearth roaster; 0.5–2.0 kg/t for the fluid bed roaster; 0.2-1.0 kg/t for the electric furnace; 1.0-2.0 kg/t for the Pierce-Smith 436 converter; and 0.4 kg/t for the dryer upstream of the flash furnace. Ammonia 437 and hydrogen sulfide are pollutants associated with the ammonia leach process; 438 439 hydrogen sulfide emissions are associated with acid leaching processes. Highly 440 toxic nickel carbonyl is a contaminant of concern in the carbonyl refining process.

- Liquid Effluents Pyrometallurgical processes for processing sulfidic ores are generally dry, and effluents are of minor importance, although wet electrostatic precipitators (ESPs) are often used for gas treatment, and the resulting wastewater could have high metal concentrations. Process bleed streams may contain antimony, arsenic, or mercury. Large quantities of water are used for slag granulation, but most of this water should be recycled.
- 448 449 Solid Wa

Solid Wastes and Sludges The smelter contributes a slag that is a dense silicate. Sludges that require disposal will result when neutralized process effluents produce a precipitate."

Apparently not all extracted and refined nickel metal from nickel ore is made into nickel compounds for agricultural usage. Nickel is primarily used in many industrial and consumer products, including stainless steel, other nickel alloys, magnets, coinage, rechargeable batteries, etc. The following is quoted from <u>ATSDR-Ni</u> (2005) and is useful in estimating the relative magnitude of environmental consequence when nickel compounds are used as micronutrients.

- 459 "The distribution of nickel consumption by use in 2002 was as follows: stainless and heat-resistant steel, 61%; nickel-copper and copper-nickel alloys, 4%; other 460 nickel alloys, 13%; electroplating, 6%; superalloys, 9%; and other, 7%. Other uses 461 include cast iron; chemicals and chemical use; electric, magnet, expansion alloys; 462 steel alloys, other than stainless steel; batteries; and ceramics. Forty-six percent 463 of primary nickel consumption in 2002 was for the production of stainless steel 464 and low-nickel steels, and 33% was used for the production of superalloys and 465 related nickel-based alloys (Kuck 2002)." 466
- 468 The use of nickel compounds as micronutrients should be in the category of "chemicals and 469 chemical use" under "other, 7%".

471	Evaluation Question #5: Is the petitioned substance harmful to the environment? (From 7
472	U.S.C. § 6517 (c) (1) (A) (i) and 7 U.S.C. § 6517 (c) (2) (A) (i).)
473	
474	All of these components including nickel, i.e. simple inorganic compounds of B, Cu, Fe, Mn, Mo,
475	Zn, Ni, and Co, are found existing naturally in soil. Compounds of sulfates and oxides are
476	applied as the micronutrients, but they either stay as solid if the respective solubility is low, or
477	dissolve to the respective ions. These ions, BO ₃ ³⁻ , Cu ²⁺ , Fe ³⁺ , Fe ²⁺ , Mn ²⁺ , MoO ₄ ²⁻ , Zn ²⁺ , Ni ²⁺ , etc,
478	are thermodynamically stable, with respect to the physicochemical conditions of soil and surface
479	water. The chemical reactivity of these compounds (i.e. ions) towards other chemicals/materials
480	is low. The applied micronutrients are not expected to be significantly different from those
481	natural components in terms of concentration and physiological activity, when the applied
482	amounts are under otherwise properly set limits.
483	anounts are under otherwise property set minus.
	When micronutrients are applied as cholates, some cholating agents such as ETDA are surthetic
484	When micronutrients are applied as chelates, some chelating agents such as ETDA are synthetic
485	but do not naturally exist in soil. Potentially, these chelating agents may cause the loss of other
486	components in soil by complexing those components and making those components soluble in
487	water.
488	
489	On the other hand, these components, such as Cu, Zn, Ni, Co, Mo, Fe, and Mn, are also termed as
490	"heavy metals". The contamination of these heavy metals to the environment is well
491	documented. It is a situation of case by case analysis, but the contamination problem such as the
492	contamination of nickel in old orchard where fertilizers have been used extensively might be
493	more general than the deficiency problem (e.g. U.S. EPA's <u>Background report on fertilizer use</u> ,
494	contaminants and regulations; U.S. EPA's Nutrient Management and Fertilizer; and USDA's
495	Heavy Metal Soil Contamination).
496	
497	According to 7 CFR 205.601(j)(6), soil deficiency must be documented before these micronutrients
498	are applied. Currently, nickel is not counted as one of those micronutrients.
499	
500	Evaluation Question #6: Is there potential for the petitioned substance to cause detrimental
501	chemical interaction with other substances used in organic crop or livestock production?
502	(From 7 U.S.C. § 6518 (m) (1).)
503	
504	As given above in Question #5, the reactivity of these micronutrients including nickel in soil is
505	low towards other chemicals/substances, these components exist naturally in soil, the applied
505 506	micronutrients are not expected to be significantly different from those natural components in
500 507	
	terms of concentration and physiological activity, and a previously existing soil status would not
508	be substantially modified, when the applied amounts are under properly set limits. Currently,
509	soluble boron products, sulfates, carbonates, oxides, or silicates of zinc, copper, iron, manganese,
510	molybdenum, selenium, and cobalt are allowed in organic crop production (7 CFR 205.601).
511	Nickel is not included in 7 CFR 205.601.
512	
513	On the other hand, the uptake of one component by plants might be interfered or suppressed by
514	
515	the excess presence of another component among these micronutrients. Table 2 of Ohio State
-	the excess presence of another component among these micronutrients. Table 2 of <u>Ohio State</u> <u>University</u> , "Availability of micronutrients as affected by other micronutrients (antagonism) and
516	
516 517	<u>University</u> , "Availability of micronutrients as affected by other micronutrients (antagonism) and macronutrients in soilless mixes," listed the factors affecting the availability of boron, manganese,
517	<u>University</u> , "Availability of micronutrients as affected by other micronutrients (antagonism) and macronutrients in soilless mixes," listed the factors affecting the availability of boron, manganese, copper, iron, molybdenum, and zinc. The availability of nickel to pecan trees was reduced by the
517 518	<u>University</u> , "Availability of micronutrients as affected by other micronutrients (antagonism) and macronutrients in soilless mixes," listed the factors affecting the availability of boron, manganese, copper, iron, molybdenum, and zinc. The availability of nickel to pecan trees was reduced by the excess presence of zinc (<u>University of Georgia</u>). The excess presence of nickel suppressed the
517 518 519	<u>University</u> , "Availability of micronutrients as affected by other micronutrients (antagonism) and macronutrients in soilless mixes," listed the factors affecting the availability of boron, manganese, copper, iron, molybdenum, and zinc. The availability of nickel to pecan trees was reduced by the
517 518 519 520	<u>University</u> , "Availability of micronutrients as affected by other micronutrients (antagonism) and macronutrients in soilless mixes," listed the factors affecting the availability of boron, manganese, copper, iron, molybdenum, and zinc. The availability of nickel to pecan trees was reduced by the excess presence of zinc (<u>University of Georgia</u>). The excess presence of nickel suppressed the assimilation of Zn, Cu, Fe, Mn, Ca, Mg, and S nutrients (Yang et al., 1996).
517 518 519 520 521	<u>University</u> , "Availability of micronutrients as affected by other micronutrients (antagonism) and macronutrients in soilless mixes," listed the factors affecting the availability of boron, manganese, copper, iron, molybdenum, and zinc. The availability of nickel to pecan trees was reduced by the excess presence of zinc (<u>University of Georgia</u>). The excess presence of nickel suppressed the assimilation of Zn, Cu, Fe, Mn, Ca, Mg, and S nutrients (Yang et al., 1996). The toxicity effect of one component could be enhanced by another component. For example,
517 518 519 520 521 522	 <u>University</u>, "Availability of micronutrients as affected by other micronutrients (antagonism) and macronutrients in soilless mixes," listed the factors affecting the availability of boron, manganese, copper, iron, molybdenum, and zinc. The availability of nickel to pecan trees was reduced by the excess presence of zinc (<u>University of Georgia</u>). The excess presence of nickel suppressed the assimilation of Zn, Cu, Fe, Mn, Ca, Mg, and S nutrients (Yang et al., 1996). The toxicity effect of one component could be enhanced by another component. For example, scots pine (<i>Pinus sylvestris</i> L.) saplings did not survive when individually treated with 150 mg L⁻¹
517 518 519 520 521	<u>University</u> , "Availability of micronutrients as affected by other micronutrients (antagonism) and macronutrients in soilless mixes," listed the factors affecting the availability of boron, manganese, copper, iron, molybdenum, and zinc. The availability of nickel to pecan trees was reduced by the excess presence of zinc (<u>University of Georgia</u>). The excess presence of nickel suppressed the assimilation of Zn, Cu, Fe, Mn, Ca, Mg, and S nutrients (Yang et al., 1996). The toxicity effect of one component could be enhanced by another component. For example,

526 527 528	Evaluation Question #7: Are there adverse biological or chemical interactions in the agro- ecosystem by using the petitioned substance? (From 7 U.S.C. § 6518 (m) (5).)
529 530 531 532	As it has been discussed above in Questions #5 and #6, the reactivity of these micronutrients in soil and surface water is low towards other chemicals/substances and the added micronutrients are not much different from those natural micronutrients when these are applied under proper limit.
533	
534	Micronutrients are essential for normal plant growth, but levels above that required for good
535	growth can be toxic and suppress plant growth, and may cause adverse biological or chemical
536	interactions in the agro-ecosystem. The range between benign and toxic might be narrow,
537	depending on crops, soil condition, agricultural practices, micronutrients, and agro-ecosystem.
538	
539	Currently, soluble boron products, sulfates, carbonates, oxides, or silicates of zinc, copper, iron,
540	manganese, molybdenum, selenium, and cobalt are allowed in organic crop production (7 CFR
541	205.601). The toxicity of nickel was about 100 times lower than that of copper for water plants
542	(Kupper et al., 1996) and fishes (Dave and Xiu, 1991). Nickel was less toxic than copper and zinc
543	towards the copepod ⁵ Acartia tonsa (Bielmyer et al., 2006) and shrimp (Lussier et al., 1985).
544	
545	"Toxicity can occur when micronutrients are applied in excess (usually more than one
546	application). Common sources of micronutrients are: the charger in the mix, the irrigation water,
547	and fertilizers applied during the crop cycle. Growers MUST have an idea of how much
548	micronutrient they are adding through each of these sources in order to avoid toxicities. Toxicity
549	symptoms are difficult to recognize visually (only someone with much experience can do it) and
550	are usually mistaken by deficiency symptoms by growers. How do we resolve these problems?
551	First of all, only a correct diagnosis of the problem will lead to the proper solution. Do you have a
552	micronutrient deficiency or is it an excess? Identify the micronutrient causing the problem.
553	Identify the cause of the problem: is the nutrient not present or is it present but unavailable?
554	Answering these questions will help you (and your Extension agent or consultant) tackle the
555	problem," (<u>Ohio State University</u>).
556	
557	Evaluation Question #8: Are there detrimental physiological effects on soil, organisms, crops,
558	or livestock by using the petitioned substance? (From 7 U.S.C. § 6518 (m) (5).)
559	
560	As it has been discussed in the above questions (#5, #6, and #7), micronutrients are needed in
561	relatively small quantities. Analyses such as soil analysis and plant analysis are critical to
562	confirm nutrient deficiency problem. Most of the micronutrients naturally exist in soil. The
563	applied micronutrients are not substantially different from those naturally existing
564	micronutrients, after soil and plant analyses are conducted, deficiency problems are confirmed,
565	and proper fertilizing program is established.
566	
567	A micronutrient disorder may be a deficiency or toxicity. Over-applied micronutrients may
568	cause phytotoxicity effects. Toxicity is relevant to crops, soil conditions, applied micronutrients,
569	and applied amounts. A case by case analysis is necessary. "Secondary and Micronutrients for
570	Vegetables and Field Crops" by Michigan State University described the application and the

- 571 potential toxicity of calcium, magnesium, sulfur, manganese, zinc, copper, iron, boron and
- 572 molybdenum. Toxicity effects could all occur if these micronutrients are over-applied, except
- that "plants appear quite tolerant of high soil molybdenum concentrations. There is no record of
- 574 molybdenum toxicity under field conditions." Nickel was not discussed in "Secondary and
- 575 Micronutrients for Vegetables and Field Crops".
- 576

⁵ Copepods are a group of small crustaceans found in the sea and nearly every freshwater habitat. Many species are planktonic (drifting in sea waters), but more are benthic (living on the ocean floor).

577	Nickel - deficiency
578 579 580 581 582 583	Evidences suggest that nickel is involved in limited activities of higher plants and is essential to higher plants, but the requirement is minimal (Eskew et al., 1984; Brown et al., 1987; Brown et al., 1990). Nickel in higher plants was mainly found in urease which converts urea to carbon dioxide and ammonium (Bai et al., 2007; Tejada-Jimenez et al., 2009; Hansch and Mendel, 2009).
585 584 585 586 587 588	"Although Ni is a recognized essential mineral nutrient element for higher plants, its agricultural and biological significance is poorly understood. This is largely because of the low levels thought to be needed by plants (about 1–100 ng g ⁻¹ dry weight) in relation to the relative abundance of Ni in essentially all soils (> 5 kg ha ⁻¹)," (Bai et al., 2006 and additional references cited therein).
588 589 590 591 592 593	Essential micronutrients were found as constituents in over 1500 proteins. While zinc was found in > 1200 proteins, and iron, copper and manganese were found in 50-150 proteins respectively, nickel, as well as molybdenum, was found in less than five proteins (Hansch and Mendel, 2009). That might be why nickel is considered as "ultra-micronutrient," and is not always in the list of "micronutrients" for plants.
593 594 595 596 597 598 599 600 601	The nickel deficiency was especially evident in ureide-transporting woody perennials such as pecan tree (Wood et al., 2006; Bai et al., 2006). One cause of nickel deficiency is the suppressed nickel uptake by the excessive presence of zinc (<u>University of Georgia</u>). The metabolic consequence of nickel deficiency was the accumulation of urea, disrupted metabolism of amino acids, and reduced urease activity. The morphological symptoms of nickel deficiency in a woody perennial were dwarfing of leaves and leaflets with respect to healthy leaves, i.e. so called mouse ear in pecan (Wood et al., 2004; Bai et al., 2006; <u>University of Georgia</u>).
602	Nickel - phytotoxicity
603 604 605 606 607	At high concentrations, nickel might be toxic to plants. The level of toxicity might depend on plant species, stage of growing, cultivation conditions, nickel concentration, and exposure time (Yang et al., 1996).
608 609 610 611 612	Natural nickel content in plants is 0.05-10 μ g g ⁻¹ (DW) (Dalton et al., 1988; Kramer et al., 1997). Ni-hyperaccumulator plants are defined as containing at least 1,000 μ g g ⁻¹ (DW) with preferential accumulation in the shoots (Pollard et al., 2002). Nickel toxicity levels are 10 μ g g ⁻¹ (DW) in sensitive species, 50 μ g g ⁻¹ (DW) in moderately tolerant species, and 1,000 μ g g ⁻¹ (DW) in Ni-hyperaccumulator plants, such as <i>Alyssum</i> and <i>Thlaspi</i> species (Chen et al., 2009).
 613 614 615 616 617 618 619 	Chlorosis and necrosis of leaves appeared in sensitive species (barley, wheat, etc) after these plants were treated with nickel at very low concentrations (less than 200 μ mol L ⁻¹) (Chen et al., 2009). Other effects of toxicity could be retardation of germination, inhibition of growth, reduction of yield, induction of leaf chlorosis and wilting, disruption of photosynthesis, and inhibition of CO ₂ assimilation. Respective examples of these toxicity effects are given in the review paper by Chen et al. (2009).
619 620 621 622 623 624 625 626 627 628 629	Seeds of wheat (<i>Triticum aestivum</i> L., cv. Zyta) were germinated in Petri dishes for two days. The seedlings were then hydroponically cultivated in solutions containing three levels of nickel (NiSO ₄): control (or zero), 50, and 100 µmol L ⁻¹ , respectively. After the two-day-old seedlings were cultivated in the nickel solutions for seven days, the seedlings' fresh weight, and other items were measured (Gajewska and Sklodowska, 2009). The concentrations of nickel in the seedlings were 0.6, 73 and 143 µg g ⁻¹ DW, respectively for the three exposure levels. The results of several other items were fresh weight (FW) (mg, 159, 136 and 84), nitrate (µmol g ⁻¹ FW, 29, 26 and 23), ammonium (µmol g ⁻¹ FW, 8.8, 9.8 and 11.8), and nitrate reductase (U mg ⁻¹ protein, 3.8, 3.2 and 2.3), respectively for the three exposure levels. Changes of 20-40% were also observed from
630	the results of nitrite reductase and nine other items, respectively for the three exposure levels.

The growth of wheat, in this experiment, was more inhibited at higher nickel exposures. This 631 example shows the significant effect of nickel on the "growth of plants", probably when the 632 "plants" were still at the seedling stage. 633

634

635 The accumulation of nickel in non-Ni-hyperaccumulator, chamomile (Matricaria chamomilla L.),

636 was investigated by Kováčik et al. (2009), using hydroponically cultivated chamomile plants.

Twenty-one-day-old seedlings of chamomile were cultivated for four weeks, then these were 637

further cultivated in Ni-enriched solutions containing control (or zero), 3, 60, and 120 µmol L-1 of 638 nickel (NiCl₂), respectively. After cultivated for ten days, the concentrations of nickel in the leaf 639

640 rosettes of chamomile were 3, \sim 5, \sim 71, and \sim 139 µg g⁻¹ (DW), respectively for the four exposure

levels. Some other results of minerals in the rosettes were potassium (mg g^{-1} , 109, 98, 95, and 78), 641 642 sodium (mg g⁻¹, 4.1, 4.1, 4.2, and 3.9), magnesium (mg g⁻¹, 3.2, 3.2, 3.2, and 3.1), iron (µg g⁻¹, 136,

- 643 134, 315, and 211), and copper ($\mu g g^{-1}$, 16, 16, 18 and 18), respectively for the four exposure levels.
- 644 There was no substantial change in the concentrations of 17 free amino acids in the leaf rosettes, 645 respectively for the four exposure levels. With respect to the substantial change in nickel
- concentrations at these four exposure levels, there were some changes in all of the other items as 646
- 647 given above, but the changes could be judged as insignificant. In other words, the growth of
- 648 chamomile, in that experiment, was not affected by its exposure to elevated concentrations of
- nickel. This example shows a "no-effect" of nickel on the "growth of plants", probably when the 649
- "plants" were resistant to high nickel concentrations. The applied nickel concentrations in the 650
- 651 two examples were close to each other.
- 652

Evaluation Question #9: Is there a toxic or other adverse action of the petitioned substance or 653 its breakdown products? (From 7 U.S.C. § 6518 (m) (2).) 654

655

Micronutrients may be applied as different compounds (e.g. copper sulfate and copper oxide), 656 but the effect components are the respective ions (e.g. Cu²⁺ for different copper compounds and 657 658 Ni²⁺ for different nickel compounds). In other words, most of the applied micronutrients are 659 simple ionic forms and will not breakdown any further.

660

662

661 The phytotoxicity of nickel compounds is discussed in Question # 8.

Evaluation Question #10: Is there undesirable persistence or concentration of the petitioned 663 substance or its breakdown products in the environment? (From 7 U.S.C. § 6518 (m) (2).) 664

665 As given above in Questions #4-#9, these micronutrients occur naturally in soil. The added 666 micronutrients are not much different from those respective natural components. 667

668

669 670 Micronutrient nickel and other nickel

Like other micronutrients (such as Cu, Mn, Zn, and Fe), the use of nickel as a micronutrient 671

672 accounts for a very small percentage of all industrial use (see Question #4). Nickel is released to

673 the environment (air, water, and soil) mainly from industrial sources and other consumer

products. "Nickel and its compounds are naturally present in the Earth's crust, and releases to 674

675 the atmosphere occur from natural discharges such as windblown dust and volcanic eruptions, as

well as from anthropogenic activities. It is estimated that 8.5 million kg of nickel are emitted into 676 677 the atmosphere from natural sources such as windblown dust, volcanoes, and vegetation each

year (Bennett 1984; Schmidt and Andren 1980). Five times that quantity is estimated to come from 678

anthropogenic sources (Nriagu and Pacyna 1988). The burning of residual and fuel oil is 679

responsible for 62% of anthropogenic emissions, followed by nickel metal refining, municipal 680

incineration, steel production, other nickel alloy production, and coal combustion (Bennett 1984; 681

Schmidt and Andren 1980)," (ATSDR-Ni, 2005). 682

The release of nickel from general industry sources to the environment, the environmental fate of
the released nickel, and the levels of nickel monitored or estimated in the environment, in terms
of air, water and soil, are substantially (30 pages) discussed in <u>ATSDR-Ni</u> (2005).

686	of air, water and soil, are substantially (30 pages) discussed in <u>ATSDR-Ni</u> (2005).
687	
688	Nickel in the environment
689	
690	The following is quoted from <u>ATSDR-Ni</u> (2005).
691	
692	"Nickel is a natural constituent of soil; levels vary widely depending on local
693	geology and anthropogenic input. The typical concentrations of nickel reported
694	in soil range from 4 to 80 ppm Median nickel concentrations in rivers and
695	lakes range from ≈ 0.5 to 6 µg/L. Levels in groundwater appear to be similar to
696	those in surface water. Levels in seawater are typically 0.1–0.5 μ g/L."
697	
698	"The speciation and physicochemical state of nickel is important in considering
699	its behavior in the environment and availability to biota. For example, the nickel
700	incorporated in some mineral lattices may be inert and have no ecological
701	significance. Most analytical methods for nickel do not distinguish the form of
702	nickel; the total amount of nickel is reported, but the nature of the nickel
703	compounds and whether they are adsorbed to other material is not known. This
704	information, which is critical in determining nickel's liability and availability, is
705	site specific. Therefore, it is impossible to predict nickel's environmental behavior
706	<u>on a general basis</u> ."
707	
708	"Little is known concerning the chemistry of nickel in the atmosphere. The
709	probable species present in the atmosphere include soil minerals, nickel oxide,
710	and nickel sulfate (Schmidt and Andren 1980). In aerobic waters at
711	environmental pHs, the predominant form of nickel is the hexahydrate $Ni(H_2O)_6$
712	²⁺ ion (Richter and Theis 1980). Complexes with naturally occurring anions, such
713	as OH ⁻ , SO ₄ ²⁻ , and Cl ⁻ , are formed to a small degree. Complexes with hydroxyl
714	radicals are more stable than those with sulfate, which in turn are more stable
715	than those with chloride. Ni(OH) $_2$ ⁰ becomes the dominant species above pH 9.5.
716	In anaerobic systems, nickel sulfide forms if sulfur is present, and this limits the
717	solubility of nickel. In soil, the most important sinks for nickel, other than soil
718	minerals, are amorphous oxides of iron and manganese. The mobility of nickel in
719	soil is site specific depending mainly on soil type and pH. The mobility of nickel
720	in soil is increased at low pH. At one well-studied site, the sulfate concentration
721	and the surface area of soil iron oxides were also key factors affecting nickel
722	adsorption (Richter and Theis 1980)."
723	
724	Fate of nickel in soil
725	
726	Atmospheric nickel and nickel in aquatic system are eventually scavenged, via adsorption,
727	absorption, rain fall, falling, etc to soil and sediment. The follow is quoted from ATSDR-Ni
728	(2005).
729	
730	"Nickel is strongly adsorbed by soil, although to a lesser degree than lead,
731	copper, and zinc (Rai and Zachara 1984). There are many adsorbing species in
732	soil, and many factors affect the extent to which nickel is adsorbed, so the
733	adsorption of nickel by soil is site specific. Soil properties such as texture, bulk
734	density, pH, organic matter, the type and amount of clay minerals, and certain
735	hydroxides, as well as the extent of groundwater flow, influence the retention
736	and release of metals by soil (Richter and Theis 1980)."
737	······································

762

Micronutrients

"Amorphous oxides of iron and manganese, and to a lesser extent clay minerals, 738 are the most important adsorbents in soil. In alkaline soils, adsorption may be 739 irreversible (Rai and Zachara 1984), which limits nickel's availability and 740 741 mobility in these soils. For example, in recent studies of nickel speciation in 742 ferromanganese nodules from loess soils of the Mississippi Basin, nickel is found 743 to have a higher partition in the soil nodules than in soil clay matrices (Manceau 744 et al. 2003). This is due to the selective sequesterization of nickel by finely 745 divided iron and manganese oxides in goethite and lithiophorite minerals 746 present in the soils. Cations such as Ca^{2+} and Mg^{2+} have been reported to reduce 747 adsorption due to competition for binding sites, whereas anions like sulfate 748 reduce adsorption as a result of complexation. Nickel adsorption depends 749 strongly on metal concentration and pH (Giusti et al. 1993). For each mole of 750 nickel adsorbed by iron and manganese oxide, $\approx 1-1.5$ moles of hydrogen ions are released (Rai and Zachara 1984). For aluminum oxide, as many as 2.3 moles H⁺ 751 752 are released. Mustafa and Haq (1988) found that the adsorption of nickel onto 753 iron oxide at pH 7.0 was rapid and increased with increasing temperature. They 754 also found that two hydrogen ions are released into a solution when nickel is adsorbed. These studies indicate that while Ni2+ is the predominant species in 755 solution, NiOH⁺ is preferentially adsorbed, and that both mono- and bidentate 756 757 complexes may be formed with the iron/manganese/aluminum oxides."

759 Evaluation Question #11: Is there any harmful effect on human health by using the petitioned 760 substance? (From 7 U.S.C. § 6517 (c) (1) (A) (i), 7 U.S.C. § 6517 (c) (2) (A) (i) and), 7 U.S.C. § 6518 761 (m) (4).)

ATSDR developed the toxicological profiles for numerous components. The profiles of those 763 764 components used as for micronutrients are listed below.

765	-	
766	Component	ASTDR Toxicological Profile
767		
768	Boron	<u>ASTDR-B</u> , 2007 (249 pages)
769	Copper	ASTDR-Cu, 2004 (314 pages)
770	Manganese	ASTDR-Mn, 2008 (539 pages)
771	Zinc	ASTDR-Zn, 2005 (352 pages)
772		
773	Nickel	<u>ASTDR-Ni</u> , 2005 (397 pages)
774		
775		Nickel
776		
777	"Nickel and its compounds have b	een designated as toxic pollutants by EPA pursuant to Section
778	307(a)(1) of the Federal Water Pollu	tion Control Act (40 CFR 401.15). As such, permits are issued
779	5	ollutant Discharge Elimination System (NPDES) for discharges
780	of nickel that meet the applicable r	equirements (40 CFR 401.12), "(<u>ATSDR-Ni</u> , 2005).
781		
782	Nickel compounds are known to be	e human carcinogens (<u>ATSDR-Ni</u> , 2005; <u>11th Report on</u>
783	Carcinogens - Nickel Compounds	<u>and Metallic Nickel</u>).
784		
785		th is extensively discussed in <u>ATSDR-Ni</u> (2005). Nickel
786	compounds "can be grouped accor	ding to their solubility in water: soluble compounds include

787 nickel chloride, nickel sulfate, and nickel nitrate, and less-soluble compounds include nickel

788 oxide and nickel subsulfide. Both the soluble and less-soluble nickel compounds are important

789 with regard to all relevant routes of exposure. Generally, the soluble compounds are considered

more toxic than the less-soluble compounds, although the less-soluble compounds are more 790

likely to be carcinogenic at the site of deposition." 791

796

811

814

824

831

The health effect was discussed in terms of "inhalation exposure", "oral exposure", and "dermal
exposure". Genotoxicity, toxicokinetics, and other aspects were discussed. Overall health effects
were summarized and given in the section of "2.2 Summary of Health Effects", <u>ATSDR-Ni</u> (2005).

797 "The general population can be exposed to nickel via inhalation, oral, and 798 dermal routes of exposure. Based on occupational exposure studies, reports of allergic contact dermatitis, and animal exposure studies, the primary targets of 799 800 toxicity appear to be the respiratory tract following inhalation exposure, the 801 immune system following inhalation, oral, or dermal exposure, and possibly the 802 reproductive system and the developing organism following oral exposure. The most commonly reported adverse health effect associated with nickel exposure is 803 contact dermatitis. Contact dermatitis is the result of an allergic reaction to nickel 804 that has been reported in the general population and workers exposed via 805 806 dermal contact with airborne nickel, liquid nickel solution, or prolonged contact with metal items such as jewelry and prosthetic devices that contain nickel. After 807 an individual becomes sensitized to nickel, dermal contact with a small amount 808 of nickel or oral exposure to fairly low doses of nickel can result in dermatitis. 809 Approximately 10-20% of the general population is sensitized to nickel." 810

The general exposure to nickel was quantitatively described in the <u>11th Report on Carcinogens</u> –
 <u>Nickel Compounds and Metallic Nickel</u>.

815 "Environmental exposure to nickel occurs through inhalation, ingestion, and 816 dermal contact. The general population is exposed to low levels of nickel because it is widely present in air, water, food, and consumer products. The general 817 population takes in most nickel through food, with the average daily intake from 818 819 food in the United States estimated to be 150-168 µg. Typical intakes from 820 drinking water and air are 2 µg and 0.1-1 µg, respectively. The general population also is exposed to nickel in nickel alloys and nickel-plated materials 821 822 such as coins, steel, and jewelry, and residual nickel may be found in soaps, fats, and oils (ATSDR 1997)." 823

- "EPA's Toxic Chemical Release Inventory (TRI) estimated that in the United
 States in 2001, 2,258 facilities released 4,481,059 lb (2,033 metric tons) of nickel,
 while 1,324 facilities released 9,799,196 lb (4,445 metric tons) of nickel
 compounds to the environment. From 1988 to 2001, the amount of nickel
 reported released by facilities was reduced by approximately half, while the
 release of nickel compounds did not change significantly (TRI01 2003)."
- "Occupational exposure to nickel occurs mainly by inhalation of dust particles
 and fumes or by dermal contact. Nickel workers also can ingest nickel-containing
 dusts. Occupational exposure is common for workers involved in mining,
 smelting, welding, casting, spray painting and grinding, electroplating,
 production and use of nickel catalysts, polishing of nickel-containing alloys, and
 other jobs where nickel and nickel compounds are produced or used (HSDB
 2003)."
- 839
- 840 841

Relative toxicity of nickel and other micronutrients

Currently, boron, copper, iron, manganese, molybdenum, zinc and cobalt are included in
7 CFR 205.601 as micronutrients. The oral LD₅₀ (rat) values of these components, as well
as the LD₅₀ value of nickel, are listed below as a general reference (borax, copper sulfate,
iron(II) sulfate, manganese sulfate, molybdate, zinc sulfate, cobalt sulfate, and nickel

846	sulfate). A strict comp	arison	should	be avoid	led since	e differe	nt comp	onents :	may have
847	different physiological functions and different toxicities. As given in Question #7, nickel								
848	is generally less toxic than copper towards water plants, and fish.								
849	8	11			1	·			
850		В	Cu	Fe	Mn	Мо	Zn	Co	Ni
851	LD ₅₀ (mg kg ⁻¹)	3220	300	319	2150	4000	1710	424	264
	LD_{50} (ling Kg ⁻)	3220	500	519	2150	4000	1710	424	204
852	TTI 1 1/1 ((· · 1/	1.6	.1 • .		c · 1 1	•.1 .1	1		1. 1.
853	The health effect resulte								
854	Section 3.9 "Interactions						,		
855	micronutrient compone								
856	and possess similar che	mical p	ropertie	s. The as	ssimilati	on of on	e compo	nent cou	ald be suppressed
857	by another excessively	presente	ed comp	onent, w	vhich cou	ıld be ev	cpected v	when m	ultiple
858	components compete fo	or limite	d space	s. The to	oxicity of	nickel v	vas redu	ced by t	he presence of
859	magnesium, iron and zi	inc (AT	SDR-Ni	, 2005). H	However	, nickel	enhance	d the ab	sorption of iron
860	in iron-deficient rats. F								
861	ferric sulfate was given.								
862	ferrous sulfate mixture,						C	,	
863	ierrous sundre mixture,	(1110)	<u></u>	_000).					
864	Evaluation Question #	12. Ict	hore a	wholly r	natural r	roduct	that cou	ld be st	hstituted
865	for the petitioned subs							iu de si	idstituteu
866	for the petitioned subs	tance:	(1101117	0.5.C. §	, 0317 (C)	(I) (A)	(11).)		
867	Como micronutrionte or	o notum	-11-1 - 11-2	ilabla ac	civon al	ovo in (Jugation	~ # ? ~ n	1 #2 Most
	Some micronutrients ar								
868	naturally available mine				ient com	ponents	such as	піскеї п	ninerals are not
869	soluble or very slowly s	oluble	in water						
870				• • •	1.	.1 1			1 . 11 .1
871	Soil naturally provides								
872	harvest of crops (e.g. Ta								
873	per acre per harvest. Soil is the weathering product of parent rock and will not resupply								
874	micronutrients within a	short p	period of	f time.					
875									
876	Metal-accumulator plar	nts may	be grov	vn on soi	ne metal	l-rich so	il and th	e harves	t may be used as
877	nutrient source for different locations. This might provide a slow-releasing source of nutrients in								
878	a long term, but may not be a quick remediation for nutrient deficiency problems. Most								
879	micronutrients are assimilated by plants as simple ionic forms (borate anion BO ₃ ³⁻ , Cl ⁻ , Cu ²⁺ , Fe ³⁺ ,								
880	Fe ²⁺ , Mn ²⁺ , MoO ₄ ²⁻ , Ni ⁺ , Zn ²⁺ , etc) (<u>Clemson University</u> , Hansch and Mendel, 2009). The releasing								
881	of micronutrients from former crops and the conversion for these components to simple ionic								
882	forms take time.								
883									
884	Evaluation Question #	13: Are	there o	ther alre	adv allo	wed sub	ostances	that cou	ıld be
885	substituted for the peti								
886	······································			(() (-	,-,	
887	Micronutrients are esse	ntial for	nlants	since the	ese comr	onents	are nlav	ing impo	ortant and specific
888	physiological roles in pl		-		-			<u> </u>	-
889	above. Other materials	0			-				
890		-				eu by m	ese mici	onumer	us. me
	following is quoted from	II I Ialis		viender (2009).				
891			1 1	•	. 11 11		•••••1	11 . 1	(
892	"Micronutrient				2				
893	like energy me								
894	gene regulation		none pe	erception	i, signal	transdi	action, a	and rep	roduction
895	among others."								
896									
897	"Essential micr							-	
898	they fulfill cat		. ,	0					0
899	group (>1200)		-	-			-		-
900	subgroup). Pro	teins co	ontainin	g iron, c	opper, o	r mang	anese m	ake up	groups in
						_			

the range of 50–150 members each, while molybdenum and nickel proteins can be counted on one hand each. Boron and chlorine are very important, but proteins or compounds that were unambiguously shown to contain these micronutrients are very rare and mostly elusive."
Furthermore, "essential" actually means more than "for the normal growth of plants". A plant will only grow and develop to the extent that its most limiting growth factor will allow, as it is specified by the "Law of the Minimum" (The availability of the most abundant nutrient in the soil is as availability of the least abundant nutrient in the soil). When the supply of nutrients to plants is not balanced, plants, limited by some deficiently supplied components, will not assimilate the extra-supplied nutrients. These extra-supplied nutrients are simply wasted and the crop yield is less than planned (<u>McKenzie</u> , 2001).
Evaluation Question #14: Are there alternative practices that would make the use of the petitioned substance unnecessary? (From 7 U.S.C. § 6517 (m) (6).)
The demand of plants for micronutrients is low, as the name of <i>micro</i> nutrients implies. Nickel is even considered as a <i>nano</i> -micronutrient. There might be sufficient micronutrients in soil already. For example, there may be between 20 to 200 pounds of boron per acre in the surface layer of South Carolina soils, but only a small portion is available to plants (<u>Clemson University</u>). As it was discussed in Question #5 and #7, "contamination by heavy metals" could be difficult to recognize and might be more general than the problem of "deficiency of micronutrients". On the other hand, "diagnosing a micronutrient deficiency can be a difficult and time consuming process" (<u>McKenzie</u> , 2001). Six steps, proposed in the section of "Determining the need for micronutrients" by <u>McKenzie</u> (2001) to identify a micronutrient deficiency, are quoted below.
"1. Ensure that poor crop growth is not the result of a macronutrient deficiency, drought, salinity, disease or insect problem, herbicide injury or some physiological problem. 2. Find out if a micronutrient deficiency has been identified before in a particular
crop or soil type in the area.3. Examine the affected crop for specific micronutrient deficiency symptoms.4. Take separate soil samples from both the affected and unaffected areas for
complete analysis, including micronutrients. 5. Send plant tissue samples from both the affected and unaffected areas for complete analysis that includes tests for micronutrient levels.
6. If all indications point to a micronutrient deficiency, apply the micronutrient to a specific, clearly marked out affected area of land to observe results in subsequent seasons."
Several factors might limit the availability of micronutrients to plants. The soil pH greatly determines this availability. In general, the availability decreases with increasing soil pH, except molybdenum. "The level of soil zinc is 'insufficient' or 'low' when extractable zinc is less than 2.0 pounds per acre and the soil pH is less than 6.1, and when extractable zinc is less than 2.5 pounds per acre and the soil pH greater than 6.0," (<u>Clemson University</u>). Lime application causes soil pH to increase while sulfur application reduces soil pH.
pH adjustment might be more important than applying "required" micronutrients for correcting "deficiency" problems. "If the deficiency is due to pH imbalance, the approach is to modify the pH of the mix. In this case, adding micronutrients can make matters worse because the level of individual micronutrients may affect the level in the plant of other micronutrients through a process called antagonism. For example, too much iron may produce manganese and zinc deficiencies, while high levels of manganese may result in iron and zinc deficiencies. Copper and zinc are also antagonistic: too much of one may produce deficiency of the other," (<u>Ohio State</u> University). Heavy metals such as Cu. Zn and Ni are strongly retained in soil. Excessively

955 <u>University</u>). Heavy metals such as Cu, Zn and Ni are strongly retained in soil. Excessively

956 957 958	applied micronutrients remain in soil for a long time and may cause toxic effects to subsequent plants.
959 960 961 962 963 964 965 966 966	The uptake of one micronutrient by plants could be interfered by the abundant presence of other micronutrients or other components. "Calcium, potassium, and nitrogen concentrations in both the soil and plant can affect boron availability and plant function, the calcium:boron (Ca:B) ratio relationship being the most important. Therefore, soils high in calcium will require more boron than soils low in calcium. The chance for boron toxicity is greater on low calcium-content soils," (Clemson University). The uptake of nickel by pecan trees, for example, was suppressed by zinc which was applied for zinc deficiency problem (University of Georgia). Solving the zinc deficiency in an alternative method may alleviate the nickel deficiency problem.
968 969 970 971 972	Animal manures usually contain various micronutrients. Various bio-solids such as sewage sludge usually contains elevated concentrations of these micronutrients such Cu, Ni, and Zn (Fuentes et al., 2007). However, these materials might contain other components in addition to these micronutrients and may be limited or prohibited in agricultural applications.
973 974 975	Crop rotation may be an option when one specific area is not fit for a specific crop due to micronutrient deficiency problem.
976	References ⁶
977 978 979	11 th Report on Carcinogens. U.S. Department of Health and Human Services. <u>http://ntp.niehs.nih.gov/ntp/roc/toc11.html</u> .
980 981 982 983	ATSDR. Toxicological Profiles. U.S. Department of Health and Human Services. <u>http://www.atsdr.cdc.gov/toxprofiles/index.asp</u> .
983 984 985 986	ATSDR-Ni: 2005 . Toxicological profile for nickel. U.S. Department of Health and Human Services. <u>http://www.atsdr.cdc.gov/toxprofiles/tp15.pdf</u> .
987 988 989 990 991 992	Bai C, Reilly CC and Wood BW. 2006 . Nickel deficiency disrupts metabolism of ureides, amino acids, and organic acids of young pecan foliage. <i>Plant Physiol</i> , 140:433-443. http://www.plantphysiol.org/cgi/reprint/140/2/433?maxtoshow=&hits=10&RESULTFORMA T=&searchid=1&FIRSTINDEX=0&sortspec=relevance&volume=140&firstpage=433&resourcetyp e=HWCIT
993 994 995	Bai C, Reilly CC and Wood BW. 2007 . Nickel deficiency affects nitrogenous forms and urease activity in spring xylem sap of pecan. <i>J. Am. Soc. Horti. Sci.</i> , 132: 302-303.
996 997 998	Berger KC. 1962 . Micronutrient deficiencies in the United States. <i>Agricultural & Food Chem.</i> , 10:178-181. <u>http://pubs.acs.org/doi/pdf/10.1021/jf60121a005</u>
999 1000 1001 1002	Bielmyer GK, Grosell M and Brix KV. 2006 . Toxicity of silver, zinc, copper and nickel to the copepod <i>Acartia tonsa</i> exposed via a phytoplankton diet. <i>Environ. Sci. Technol.</i> , 40: 2063-2068. http://pubs.acs.org/doi/pdf/10.1021/es051589a
1003 1004	Brown PH, Welch RM and Cary EE. 1987 . Nickel: A micronutrient essential for higher plants. <i>Plant Physiol</i> , 85: 801-803.
1005 1006 1007	http://www.plantphysiol.org/cgi/reprint/85/3/801?maxtoshow=&hits=10&RESULTFORMAT =&searchid=1&FIRSTINDEX=0&sortspec=relevance&volume=85&firstpage=801&resourcetype= HWCIT

⁶ All internet materials cited in this document were accessed as on August 5, 2010.

 Brown PH, Welch RM and Madison JT. 1990. Effect of nickel deficiency on soluble anion, at acid, and nitrogen levels in barley. <i>Plant Soil</i>, 125: 19-27. Chen CY, Huang DJ and Liu JQ. 2009. Functions and toxicity of nickel in plants: Recent adv and future prospects. <i>Clean</i>, 37: 304-313. DOI: 10.1002/clen.200800199. http://www3.interscience.wiley.com/journal/122325785/abstract Clemson University. Fertility recommendations. By: Agricultural Service Laboratory. Clems: University [http://www.clemson.edu/public/regulatory/ag.svc_lab/soil_testing/downloads/). Copper.Org: Uses of copper compounds: Copper sulptate. http://www.clemson.edu/public/regulatory/ag.svc_lab/soil_testing/downloads/). Copper.Org: Uses of copper compounds: Copper sulfate01.html Dalton DA, Russell SA, and Evans HJ. 1988. Nickel as a micronutrient element for plants. <i>Sigfactors</i>, 1:11-16. Dave G and Xiu RQ. 1991. Toxicity of mercury, copper, nickel, lead, and cobalt to embryos a arvae of Zebrafish. <i>Brachydanio rerio</i>. Arch. Environ. Contam. Toxicol, 21: 126-134. http://www.springerlink.com/content/k154371464164465/fulltext.pdf Ekholm P, Reinivuo H, Mattila P, Pakkala H, Koponen J, Happonen A, Hellstrom J and Dvaskainen ML. 2007. Changes in the mineral and trace element contents of cereals, fruits a regetables in Finland. <i>J. Food Comp. Anal.</i>, 20: 487-495. doi:10.1016/j.jfca.2007.02.007 Ellis DR and Salt DE. 2003. Plants, selenium and human health. <i>Current Opinion in Plant Bio</i>. 5273-279. DOI 10.1016/51369-5266(03)0030-X. http://www.sciencedirect.com/science?. ob-MImg&: imagekey=B6VS4-488W2S9-1-1 <a href="tastraftestrub_testingstatestingstatesting.pdf</li">	Dreate	m DLI Walch DM and Madican IT 1000 Effect of nickel deficiency on caluble onion an
 Chen CY, Huang DJ and Liu JQ. 2009. Functions and toxicity of nickel in plants: Recent adv and future prospects. <i>Clean</i>, 37: 304-313. DOI: 10.1002/clen.200800199. http://www3.interscience.wiley.com/journal/122325785/abstract Clemson University. Fertility recommendations. By: Agricultural Service Laboratory. Cleme University (http://www.clemson.edu/public/regulatory/ag_svc_lab/soil_testing/downloads/). Copper.Org: Uses of copper compounds: Copper sulphate. http://www.copper.org/applications/compounds/copper_sulfate01.html Dalton DA, Russell SA, and Evans HJ. 1988. Nickel as a micronutrient element for plants. <i>Biofactors</i>, 1:11-16. Dave G and Xiu RQ. 1991. Toxicity of mercury, copper, nickel, lead, and cobalt to embryos c arvae of Zebrafish, <i>Bradylanio rerio</i>. Arch. Environ. Contam. Toxicol., 21: 126-134. http://www.springerlink.com/content/k154371464164465/fulltext.pdf Ekholm P, Reinivuo H, Mattila P, Pakkala H, Koponen J, Happonen A, Hellstrom J and Ovaskainen ML. 2007. Changes in the mineral and trace element contents of cereals, fruits a regetables in Finland. J. <i>Food Comp. Anal.</i>, 20: 487-495. doi:10.1016/j.ifea.2007.02.007 Ellis DR and Salt DE. 2003. Plants, selenium and human health. <i>Current Opinion in Plant Bio</i> 5:273-279. DOI 10.1016/S1369-5266(03)00030-X. Hitp://www.sciencedricet.com/science? ob=MImg&_imagekey=B6VS4-488W2S9-1: 48. edi=62526. user=13555908.pii=S136952660300303X&_orig=search&_coverDate=06%21 EPA. 1999. Background report on fertilizer use, contaminants and regulations. http://www.epa.ngov/oppt/pubs/fertilizer.pdf EPA. 2009. Nutrient Management and Fertilizer. http://www.epa.gov/agriculture/tfer.http Eskew DL, Welch RM and Norvell WA. 1984. Nickel in higher plants. <i>Plant Physiol</i>.76:691-6 fwearchid=1&FIRSTINDEX=0&sortspec=relevance&volume=76&firstpage=691&cresource HVCTI Fuentes D, Disante KB, Valdecantos A, Cortina J		
and future prospects. <i>Clean</i> , 37: 304-313. DOI: 10.1002/clen.200800199. http://www3.interscience.wiley.com/journal/122325785/abstract Clemson University. Fertility recommendations. By: Agricultural Service Laboratory. Clems University [http://www.clemson.edu/public/regulatory/ag.svc_lab/soil_testing/downloads/). Copper.Org: Uses of copper compounds: Copper sulphate. http://www.copper.org/applications/compounds/copper_sulfate01.html Dalton DA, Russell SA, and Evans HJ. 1988 . Nickel as a micronutrient element for plants. <i>Biofactors</i> , 1:11-16. Dave G and Xiu RQ. 1991 . Toxicity of mercury, copper, nickel, lead, and cobalt to embryos a arvae of Zebrafish, <i>Brachydanio rerio</i> . Arch. Environ. Contam. Toxicol., 21: 126-134. http://www.springerlink.com/content/k154371464164465/fulltext.pdf Ekholm P, Reinivuo H, Mattila P, Pakkala H, Koponen J, Happonen A, Hellstrom J and Dvaskainen ML. 2007 . Changes in the mineral and trace element contents of cereals, fruits a vegetables in Finland. <i>J. Food Comp. Anal.</i> , 20: 487-495. doi:10.1016/j.ifca.2007.02.007 Ellis DR and Salt DE. 2003 . Plants, selenium and human health. <i>Current Opinion in Plant Bio</i> 5273-279. DOI 10.1016/51369-5266(03)00030X&. orig=search&_coverDate=06%21 E2003& sk=999939996&view=c&wchp=dGLbVzb= eSkzV&md5=8b2bd0d731287b5e575847019c680964&ie=/sdarticle.pdf EPA. 1999 . Background report on fertilizer use, contaminants and regulations. http://www.epa.gov/oppt/pubs/fertilizer.pdf EPA. 2009 . Nutrient Management and Fertilizer. http://www.epa.gov/agriculture/tfer.http Eskew DL, Welch RM and Norvell WA. 1984 . Nickel in higher plants. <i>Plant Physiol</i> , 76:691-6 atleprish. Jiii Scillae plato. 20:603.003.005. http://www.sciencedirect.com/science? ob=MImg&_imagekey=86V54-14WFMNY-5- 148c_cdi=62594.user=135590.k_pii=5026973910601606&_orig=search&_coverDate=06%21 exerchid=1&ETIRSTINDFX=0&sortspec=relevance&volume=76&fristpage=691&resource HWCIT Fuentes D, Disante KB, Valdecantos A, Cortina J and Vallejo VR. 2007 . Response of Pinus halepensis Mill. seedlings t	aciu,	and hurogen levels in barley. Funt Sou, 125. 19-27.
and future prospects. <i>Clean</i> , 37: 304-313. DOI: 10.1002/clen.200800199. http://www3.interscience.wiley.com/journal/122325785/abstract Clemson University. Fertility recommendations. By: Agricultural Service Laboratory. Clems University [http://www.clemson.edu/public/regulatory/ag.svc_lab/soil_testing/downloads/). Copper.Org: Uses of copper compounds: Copper sulphate. http://www.copper.org/applications/compounds/copper_sulfate01.html Dalton DA, Russell SA, and Evans HJ. 1988 . Nickel as a micronutrient element for plants. <i>Biofactors</i> , 1:11-16. Dave G and Xiu RQ. 1991 . Toxicity of mercury, copper, nickel, lead, and cobalt to embryos a arvae of Zebrafish, <i>Brachydanio rerio</i> . Arch. Environ. Contam. Toxicol., 21: 126-134. http://www.springerlink.com/content/k154371464164465/fulltext.pdf Ekholm P, Reinivuo H, Mattila P, Pakkala H, Koponen J, Happonen A, Hellstrom J and Dvaskainen ML. 2007 . Changes in the mineral and trace element contents of cereals, fruits a vegetables in Finland. <i>J. Food Comp. Anal.</i> , 20: 487-495. doi:10.1016/j.ifca.2007.02.007 Ellis DR and Salt DE. 2003 . Plants, selenium and human health. <i>Current Opinion in Plant Bio</i> 5273-279. DOI 10.1016/51369-5266(03)00030X&. orig=search&_coverDate=06%21 E2003& sk=999939996&view=c&wchp=dGLbVzb= eSkzV&md5=8b2bd0d731287b5e575847019c680964&ie=/sdarticle.pdf EPA. 1999 . Background report on fertilizer use, contaminants and regulations. http://www.epa.gov/oppt/pubs/fertilizer.pdf EPA. 2009 . Nutrient Management and Fertilizer. http://www.epa.gov/agriculture/tfer.http Eskew DL, Welch RM and Norvell WA. 1984 . Nickel in higher plants. <i>Plant Physiol</i> , 76:691-6 atleprish. Jiii Scillae plato. 20:603.003.005. http://www.sciencedirect.com/science? ob=MImg&_imagekey=86V54-14WFMNY-5- 148c_cdi=62594.user=135590.k_pii=5026973910601606&_orig=search&_coverDate=06%21 exerchid=1&ETIRSTINDFX=0&sortspec=relevance&volume=76&fristpage=691&resource HWCIT Fuentes D, Disante KB, Valdecantos A, Cortina J and Vallejo VR. 2007 . Response of Pinus halepensis Mill. seedlings t	Chen	CV. Huang DI and Liu IO. 2009 Functions and toxicity of nickel in plants: Recent adva
 http://www3.interscience.wiley.com/journal/122325785/abstract Clemson University. Fertility recommendations. By: Agricultural Service Laboratory. Clems University http://www.clemson.edu/public/regulatory/ag_svc_lab/soil_testing/downloads/). Copper.Org: Uses of copper compounds: Copper sulphate. http://www.copper.org/applications/compounds/copper_sulfate01.html Dalton DA, Russell SA, and Evans HJ. 1988. Nickel as a micronutrient element for plants. <i>Biofactors</i>, 1:11-16. Dave G and Xiu RQ. 1991. Toxicity of mercury, copper, nickel, lead, and cobalt to embryos a arvae of Zebrafish, <i>Brachydania verio</i>. Arch. Environ. Contam. Toxicol., 21: 126-134. http://www.springerlink.com/content/k154371464164465/fulltext.pdf Ekholm P, Reinivuo H, Mattila P, Pakkala H, Koponen J, Happonen A, Hellstrom J and Dvaskainen ML. 2007. Changes in the mineral and trace element contents of cereals, fruits a vegetables in Finland. J. Food Comp. Anal., 20: 487-495. doi:10.1016/jifca.2007.02.007 Ellis DR and Salt DE. 2003. Plants, selenium and human health. <i>Current Opinion in Plant Bio</i>: 5273-279. DOI 10.1016/S1369-5266(03)00030-X. http://www.sciencedirect.com/science? ob=MImg&_imagekey=B6VS4-488W259-1-48 4e_cdi=e5256004. gpi=31569526300303030303030303030302. E203& sk=999939996&view=c&wchp=dGLbVzb- C5k2V&md5=8b2bd0d73f287b5e57847019c680964&ie=/sdarticle.pdf EPA. 2009. Nutrient Management and Fertilizer. http://www.epa.gov/agriculture/tfer.htm Eskew DL, Welch RM and Norvell WA. 1984. Nickel in higher plants. <i>Plant Physiol</i>, 76:691-6 http://www.sciencedirect.com/science? ob=MImg&_imagekey=B6VB5-4fWF54fWFMNY-5- Ke. cule=759764.091.20603.005. http://www.sciencedirect.com/science? ob=MImg&_imagekey=B6VB5-4fWF54fWFMNY-5- Ke. cule=759764.091.20603.005. http://www.sciencedirect.com/science? ob=MImg&_imagekey=B6VB5-4fWF54fWFMNY-5- Ke. cule		
Clemson University. Fertility recommendations. By: Agricultural Service Laboratory. Clems University (http://www.clemson.edu/public/regulatory/ag_svc_lab/soil_testing/downloads/). Copper.Org: Uses of copper compounds: Copper sulphate. http://www.copper.org/applications/compounds/copper_sulfate01.html Dalton DA, Russell SA, and Evans HJ. 1988 . Nickel as a micronutrient element for plants. <i>Biofactors</i> , 1:11-16. Dave G and Xiu RQ. 1991 . Toxicity of mercury, copper, nickel, lead, and cobalt to embryos a arvae of Zebrafish, <i>Brachydanio rerio</i> . Arch. Environ. Contam. Toxicol., 21: 126-134. http://www.springerlink.com/content/k154371464164465/fulltext.pdf Ekholm P, Reinivuo H, Mattila P, Pakkala H, Koponen J, Happonen A, Hellstrom J and Dvaskainen ML. 2007 . Changes in the mineral and trace element contents of cereals, fruits a regetables in Finland. <i>J. Food Comp. Anal.</i> , 20: 487-495. doi:10.1016/j.ifca.2007.02.007 Ellis DR and Salt DE. 2003 . Plants, selenium and human health. <i>Current Opinion in Plant Bio</i> 5273-279. DOI 10.1016/51369-5266(03)00030-X. http://www.sciencedirec.com/science?. ob=MImg& imagekey=B6VS4-488W259-1- t& cdi=6252& user=1355690& pii=5136952660300030X& orig=search& coverDate=06%21 22003& sk=999939996&view=c&wchp=dGLbVzb- c5kzV&md5=8b2bd0d73f2875b575847019c680964&tie=/sdarticle.pdf EFA. 1999 . Background report on fertilizer use, contaminants and regulations. http://www.epa.gov/oppt/pubs/fertilizer.pdf EFA. 2009 . Nutrient Management and Fertilizer. http://www.epa.gov/agriculture/tfer.http Eskew DL, Welch RM and Norvell WA. 1984 . Nickel in higher plants. <i>Plant Physiol</i> , 76:691-6 http://www.sciencedirect.com/science?-celevance&volume=76&firstpage=691&resource HWCTT Fuentes D, Disante KB, Valdecantos A, Cortina J and Vallejo VR. 2007 . Response of Pinus nalepensis Mill. seedlings to biosolids enriched with Cu, Ni and Zn in three Mediterranean soils. <i>Environ. Pollu.</i> , 145:316-323. doi:10.1016/j.envpol.2006.03.005 .tttp://www.sciencedirect.com/science? co=MImg& imagekey=86VB5-41WFMNY-5-		
 University [http://www.clemson.edu/public/regulatory/ag_svc_lab/soil_testing/downloads/). Copper.Org: Uses of copper compounds: Copper sulphate. http://www.copper.org/applications/compounds/copper_sulfate01.html Dalton DA, Russell SA, and Evans HJ. 1988. Nickel as a micronutrient element for plants. <i>Biofactors</i>, 1:11-16. Dave G and Xiu RQ. 1991. Toxicity of mercury, copper, nickel, lead, and cobalt to embryos a arvae of Zebrafish, <i>Brachydanio rerio</i>. Arch. Environ. Contam. Toxicol., 21: 126-134. http://www.springerlink.com/content/k154371464164465/fulltext.pdf Ekholm P, Reinivuo H, Mattila P, Pakkala H, Koponen J, Happonen A, Hellstrom J and Dvaskainen ML. 2007. Changes in the mineral and trace element contents of cereals, fruits a vegetables in Finland. <i>J. Food Comp. Anal.</i>, 20: 487-495. doi:10.1016/j.ifca.2007.02.007 Ellis DR and Salt DE. 2003. Plants, selenium and human health. <i>Current Opinion in Plant Bio</i>. 5:273-279. DOI 10.1016/S1369-5266(03)00030-X. http://www.sciencedirect.com/science2.ob=MImg&_imagekey=B6V54-488W259-1-48.exdi=6252&.use=1335590&pii=S13695266030030X& orig=search&_coverDate=06%21 F2003& sk=999939996&view=c&wchp=dGLbVzb SckzV&md5=8b2bd0d73f287b5e575847019c68964&tie=/sdarticle.pdf EPA. 1999. Background report on fertilizer use, contaminants and regulations. http://www.plantphysiol.org/cgi/reprint/76/3/691?maxtoshow=&hits=10&RE5ULTFOF #esearchid=1&ERSTINDEX=0&sortspec=relevance&volume=76&Efirstpage=691&eresource HWCTI Fuentes D, Disante KB, Valdecantos A, Cortina J and Vallejo VR. 2007. Response of Pinus analepensis Mill. seedlings to biosolids enriched with Cu, Ni and Zn in three Mediterranean soils. <i>Environ. Pollu.</i>, 145:316-323. doi:10.1016/j.envpol.2006.03.005. http://www.sciencedirect.com/science?_ob=MImg&_imagekey=BeVB5-4JWEMNY-5-1&K.exdis-5806eb847378b5fe7d4a1105399fbrba&i=/sdarticle.pdf Cajewska E an	<u>mp.</u>	// www.interscience.wney.com/journal/122525765/abstract
 University [http://www.clemson.edu/public/regulatory/ag_svc_lab/soil_testing/downloads/). Copper.Org: Uses of copper compounds: Copper sulphate. http://www.copper.org/applications/compounds/copper_sulfate01.html Dalton DA, Russell SA, and Evans HJ. 1988. Nickel as a micronutrient element for plants. <i>Biofactors</i>, 1:11-16. Dave G and Xiu RQ. 1991. Toxicity of mercury, copper, nickel, lead, and cobalt to embryos a arvae of Zebrafish, <i>Brachydanio rerio</i>. Arch. Environ. Contam. Toxicol., 21: 126-134. http://www.springerlink.com/content/k154371464164465/fulltext.pdf Ekholm P, Reinivuo H, Mattila P, Pakkala H, Koponen J, Happonen A, Hellstrom J and Dvaskainen ML. 2007. Changes in the mineral and trace element contents of cereals, fruits a vegetables in Finland. <i>J. Food Comp. Anal.</i>, 20: 487-495. doi:10.1016/j.ifca.2007.02.007 Ellis DR and Salt DE. 2003. Plants, selenium and human health. <i>Current Opinion in Plant Bio</i>. 5:273-279. DOI 10.1016/S1369-5266(03)00030-X. http://www.sciencedirect.com/science2.ob=MImg&_imagekey=B6V54-488W259-1-48.exdi=6252&.use=1335590&pii=S13695266030030X& orig=search&_coverDate=06%21 F2003& sk=999939996&view=c&wchp=dGLbVzb SckzV&md5=8b2bd0d73f287b5e575847019c68964&tie=/sdarticle.pdf EPA. 1999. Background report on fertilizer use, contaminants and regulations. http://www.plantphysiol.org/cgi/reprint/76/3/691?maxtoshow=&hits=10&RE5ULTFOF #esearchid=1&ERSTINDEX=0&sortspec=relevance&volume=76&Efirstpage=691&eresource HWCTI Fuentes D, Disante KB, Valdecantos A, Cortina J and Vallejo VR. 2007. Response of Pinus analepensis Mill. seedlings to biosolids enriched with Cu, Ni and Zn in three Mediterranean soils. <i>Environ. Pollu.</i>, 145:316-323. doi:10.1016/j.envpol.2006.03.005. http://www.sciencedirect.com/science?_ob=MImg&_imagekey=BeVB5-4JWEMNY-5-1&K.exdis-5806eb847378b5fe7d4a1105399fbrba&i=/sdarticle.pdf Cajewska E an	Clem	ison University. Fertility recommendations. By: Agricultural Service Laboratory. Clemso
http://www.clemson.edu/public/regulatory/ag_svc_lab/soil_testing/downloads/). Copper.Org: Uses of copper compounds: Copper sulphate. http://www.copper.org/applications/compounds/copper_sulfate01.html Dalton DA, Russell SA, and Evans HJ. 1988 . Nickel as a micronutrient element for plants. <i>Biofactors</i> , 1:11-16. Dave G and Xiu RQ. 1991 . Toxicity of mercury, copper, nickel, lead, and cobalt to embryos a arvae of Zebrafish, <i>Brachydanio rerio</i> . Arch. Environ. Contam. Toxicol., 21: 126-134. http://www.springerlink.com/content/k154371464164465/fulltext.pdf Ekholm P, Reinivuo H, Mattila P, Pakkala H, Koponen J, Happonen A, Hellstrom J and Dvaskainen ML. 2007 . Changes in the mineral and trace element contents of cereals, fruits a regetables in Finland. <i>J. Food Comp. Anal.</i> , 20: 487-495. <u>doi:10.1016/i.jfca.2007.02.007</u> Ellis DR and Salt DE. 2003 . Plants, selenium and human health. <i>Current Opinion in Plant Biol</i> 5:273-279. DOI 10.1016/S1369-5266(03)00030-X. http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6VS4-488W259-1- 1& cdi=6252& user=1355690& pii=S136952603000300X& orig=search&_coverDate=06%21 E203& sk=999939996&view=c&wchp=dGLbVzb_ 2:5k2V&md5=8b2bd0d73f287b5e575847019c680964&ie=/sdarticle.pdf EPA. 1999 . Background report on fertilizer use, contaminants and regulations. http://www.epa.gov/oppt/pubs/fertilizer.pdf EPA. 2009 . Nutrient Management and Fertilizer. http://www.epa.gov/agriculture/tfer.htm Eskew DL, Welch RM and Norvell WA. 1984 . Nickel in higher plants. <i>Plant Physiol</i> , 76:691-6 http://www.plantphysiol.org/cgi/reprint/76/3/691?maxtoshow=&hits=10&RESULTPOF #&searchid=1&FIRSTINDEX=0&sortspec=relevance&volume=76&firstpage=691&resource twCIT Fuentes D, Disante KB, Valdecantos A, Cortina J and Vallejo VR. 2007 . Response of Pinus halepensis Mill. seedlings to biosolids enriched with Cu, Ni and Zn in three Mediterranean soils. <i>Environ. Pollu.</i> , 145:316-323. doi:10.1016/j.jenvpol.2006.03.005. http://www.steineciderect.com/science?_ob=MImg&_imagekey=B6VB5-4IWEM		
Copper. Org: Uses of copper compounds: Copper sulphate. http://www.copper.org/applications/compounds/copper_sulfate01.html Dalton DA, Russell SA, and Evans HJ. 1988 . Nickel as a micronutrient element for plants. <i>Biofactors</i> , 1:11-16. Dave G and Xiu RQ. 1991 . Toxicity of mercury, copper, nickel, lead, and cobalt to embryos a arvae of Zebrafish, <i>Brachydanio rerio</i> . Arch. Environ. Contam. Toxicol., 21: 126-134. http://www.springerlink.com/content/k154371464164465/fulltext.pdf Ekholm P, Reinivuo H, Mattila P, Pakkala H, Koponen J, Happonen A, Hellstrom J and Dvaskainen ML. 2007 . Changes in the mineral and trace element contents of cereals, fruits a regetables in Finland. <i>J. Food Comp. Anal.</i> , 20: 487-495. <u>doi:10.1016/j.jfca.2007.02.007</u> Ellis DR and Salt DE. 2003 . Plants, selenium and human health. <i>Current Opinion in Plant Biol</i> 5:273-279. DOI 10.1016/51369-5266(03)00030-X. http://www.sciencedirect.com/science? ob=MImg&_imagekey=B6V54-488W259-1- 4& cdi=6252& user=1355690& pii=51369526603000303& orig=search&_coverDate=06%21 E2003& sk=999939996&view=c&wchp=dGLbVzb- cSkzV&md5=8b2bd0d73f287b5e575847019c680964⁣=/sdarticle.pdf EPA. 1099 . Background report on fertilizer use, contaminants and regulations. http://www.epa.gov/oppt/pubs/fertilizer.pdf EFA. 2009 . Nutrient Management and Fertilizer. <u>http://www.epa.gov/agriculture/tfer.htm</u> Eskew DL, Welch RM and Norvell WA. 1984 . Nickel in higher plants. <i>Plant Physiol</i> , 76:691-6 #csearchid=1&FIRSTINDEX=0&sortspec=relevance&volume=76&firstpage=691&cresource 4WCTT Fuentes D, Disante KB, Valdecantos A, Cortina J and Vallejo VR. 2007 . Response of Pinus halepensis Mill. seedlings to biosolids enriched with Cu, Ni and Zn in three Mediterranean soils. <i>Environ. Pollu</i> , 145:316-323. doi:10.1016/j.jenvpol.2006.03.005. http://www.seiencedirect.com/science? ob=MImg&_imagekey=B6VB5-4JWFMNY-5- &c.cdi=5917&_user=1355690&_pii=5026974106001606&_orig=search&_coverDate=01%2F E2007&_sk=998549998&view=c&ewchp=dG1zVIb- CSkWA&md5=5806eb847578b5fc7d4		
 http://www.copper.org/applications/compounds/copper_sulfate01.html Dalton DA, Russell SA, and Evans HJ. 1988. Nickel as a micronutrient element for plants. <i>Biofactors</i>, 1:11-16. Dave G and Xiu RQ. 1991. Toxicity of mercury, copper, nickel, lead, and cobalt to embryos a arvae of Zebrafish, <i>Brachydanio rerio</i>. Arch. Environ. Contam. Toxicol., 21: 126-134. http://www.springerlink.com/content/k154371464164465/fulltext.pdf Ekholm P, Reinivuo H, Mattila P, Pakkala H, Koponen J, Happonen A, Hellstrom J and Dvaskainen ML. 2007. Changes in the mineral and trace element contents of cereals, fruits a vegetables in Finland. <i>J. Food Comp. Anal.</i>, 20: 487-495. doi:10.1016/j.jfca.2007.02.007 Ellis DR and Salt DE. 2003. Plants, selenium and human health. <i>Current Opinion in Plant Bio</i>. 5:273-279. DOI 10.1016/S1369-5266(03)00030-X. http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6VS4-488W2S9-1-48_cdi=252& user=1355690& pii=513695266030030X& orig=search&_coverDate=06%21 ⁶2003& sk=999939996&view=c&wchp=dGLbVzb- ⁶SkzV&md5=8b2bd0d73f287b5e575847019c680964&ie=/sdarticle.pdf EPA. 1999. Background report on fertilizer use, contaminants and regulations. http://www.epa.gov/opt/pubs/fertilizer.pdf EPA. 2009. Nutrient Management and Fertilizer. http://www.epa.gov/agriculture/tfer.htm Eskew DL, Welch RM and Norvell WA. 1984. Nickel in higher plants. <i>Plant Physiol</i>, 76:661-6 *esearchid=1&FIRSTINDEX=0&sortspec=relevance&volume=76&firstpage=691&resource #WCIT Fuentes D, Disante KB, Valdecantos A, Cortina J and Vallejo VR. 2007. Response of Pinus halepensis Mill. seedlings to biosolids enriched with Cu, Ni and Zn in three Mediterranean soils. <i>Environ. Polu.</i>, 145:316-323. doi:10.1016/j.envpol.2006.03.05. http://www.sciencedirect.com/science?.ob=MImg&_imagekey=B6VB5-4JWEMNY-5-L& cdi=5917& user=1355690& pii=5026974910600160& orig=search&_cove	(<u> </u>	·····································
 http://www.copper.org/applications/compounds/copper_sulfate01.html Dalton DA, Russell SA, and Evans HJ. 1988. Nickel as a micronutrient element for plants. <i>Biofactors</i>, 1:11-16. Dave G and Xiu RQ. 1991. Toxicity of mercury, copper, nickel, lead, and cobalt to embryos a arvae of Zebrafish, <i>Brachydanio rerio</i>. Arch. Environ. Contam. Toxicol., 21: 126-134. http://www.springerlink.com/content/k154371464164465/fulltext.pdf Ekholm P, Reinivuo H, Mattila P, Pakkala H, Koponen J, Happonen A, Hellstrom J and Dvaskainen ML. 2007. Changes in the mineral and trace element contents of cereals, fruits a vegetables in Finland. <i>J. Food Comp. Anal.</i>, 20: 487-495. doi:10.1016/j.jfca.2007.02.007 Ellis DR and Salt DE. 2003. Plants, selenium and human health. <i>Current Opinion in Plant Bio</i>. 5:273-279. DOI 10.1016/S1369-5266(03)00030-X. http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6VS4-488W2S9-1-48_cdi=252& user=1355690& pii=513695266030030X& orig=search&_coverDate=06%21 ⁶2003& sk=999939996&view=c&wchp=dGLbVzb- ⁶SkzV&md5=8b2bd0d73f287b5e575847019c680964&ie=/sdarticle.pdf EPA. 1999. Background report on fertilizer use, contaminants and regulations. http://www.epa.gov/opt/pubs/fertilizer.pdf EPA. 2009. Nutrient Management and Fertilizer. http://www.epa.gov/agriculture/tfer.htm Eskew DL, Welch RM and Norvell WA. 1984. Nickel in higher plants. <i>Plant Physiol</i>, 76:661-6 *esearchid=1&FIRSTINDEX=0&sortspec=relevance&volume=76&firstpage=691&resource #WCIT Fuentes D, Disante KB, Valdecantos A, Cortina J and Vallejo VR. 2007. Response of Pinus halepensis Mill. seedlings to biosolids enriched with Cu, Ni and Zn in three Mediterranean soils. <i>Environ. Polu.</i>, 145:316-323. doi:10.1016/j.envpol.2006.03.05. http://www.sciencedirect.com/science?.ob=MImg&_imagekey=B6VB5-4JWEMNY-5-L& cdi=5917& user=1355690& pii=5026974910600160& orig=search&_cove	Copr	per.Org: Uses of copper compounds: Copper sulphate.
 Dalton DA, Russell SA, and Evans HJ. 1988. Nickel as a micronutrient element for plants. <i>Biofactors</i>, 1:11-16. Dave G and Xiu RQ. 1991. Toxicity of mercury, copper, nickel, lead, and cobalt to embryos a arvae of Zebrafish, <i>Brachydanio rerio</i>. Arch. Environ. Contam. Toxicol., 21: 126-134. http://www.springerlink.com/content/k154371464164465/fulltext.pdf Ekholm P, Reinivuo H, Mattila P, Pakkala H, Koponen J, Happonen A, Hellstrom J and Dvaskainen ML. 2007. Changes in the mineral and trace element contents of cereals, fruits a vegetables in Finland. <i>J. Food Comp. Anal.</i>, 20: 487-495. doi:10.1016/j.jfca.2007.02.007 Ellis DR and Salt DE. 2003. Plants, selenium and human health. <i>Current Opinion in Plant Biol</i>: 5:273-279. DOI 10.1016/S1369-5266(03)0030-X. http://www.sciencedirect.com/science?.ob=MImg& imagekey=B6VS4-488W2S9-1-48c cdi=6252k user=1355690k.pii=S13695266030030X& orig=search& coverDate=06%21 F2003& sk=999939996&view=c&wchp=dGLbVzb- eSkzV&rmd5=8b2bd0d73f287b5e575847019c680964&ie=/sdarticle.pdf EPA. 1999. Background report on fertilizer use, contaminants and regulations. http://www.epa.gov/oppl/pubs/fertilizer.pdf EFA. 2009. Nutrient Management and Fertilizer. http://www.epa.gov/oppl/pubs/fertilizer.pdf EFA. 2009. Nutrient Management and Fertilizer. http://www.epa.gov/oppl/pubs/fertilizer.pdf EFA. 109. Disante KB, Valdecantos A, Cortina J and Vallejo VR. 2007. Response of Pinus nalepensis Mill. seedlings to biosolids enriched with Cu, Ni and Zn in three Mediterranean soils. <i>Environ. Pollu.</i>, 145:316-323. doi:10.1016/j.envp01.2006.03.005. http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6VB5-4[WEMNY-5-4&ciensence4.coverDate=01%2F 2007& sk=998549998&view=c&wchp=dGLzVIb- 25WVA&md5=5806eb847578b567d4a11053991bfba&ie=/sdarticle.pdf Caj		
 Biofactors, 1:11-16. Dave G and Xiu RQ. 1991. Toxicity of mercury, copper, nickel, lead, and cobalt to embryos a arvae of Zebrafish, <i>Brachydanio rerio</i>. Arch. Environ. Contam. Toxicol., 21: 126-134. http://www.springerlink.com/content/k154371464164465/fulltext.pdf Ekholm P, Reinivuo H, Mattila P, Pakkala H, Koponen J, Happonen A, Hellstrom J and Dovaskainen ML. 2007. Changes in the mineral and trace element contents of cereals, fruits a vegetables in Finland. <i>J. Food Comp. Anal.</i>, 20: 487-495. doi:10.1016/j.fica.2007.02.007 Ellis DR and Salt DE. 2003. Plants, selenium and human health. <i>Current Opinion in Plant Biol.</i> 5:273-279. DOI 10.1016/S1369-5266(03)00030-X. http://www.sciencedirect.com/science? ob=MImg& imagekey=B6VS4-488W2S9-1-48. cdi=6252& user=1355690& pii=S136952660300030X& orig=search&_coverDate=06%21 E2003& sk=999939996&view=c&wchp=dGLbVzb-cskzV&md5=8b2bd0d73f287b5e575847019c680964&ie=/sdarticle.pdf EPA. 1999. Background report on fertilizer use, contaminants and regulations. http://www.epa.gov/oppt/pubs/fertilizer.pdf EPA. 2009. Nutrient Management and Fertilizer. http://www.epa.gov/agriculture/tfer.htm Eskew DL, Welch RM and Norvell WA. 1984. Nickel in higher plants. <i>Plant Physiol</i>, 76:691-6. http://www.plantphysiol.org/cgi/reprint/76/3/691?maxtoshow=&hits=10&RESULTFOR Eventes D, Disante KB, Valdecantos A, Cortina J and Vallejo VR. 2007. Response of Pinus nalepensis Mill. seedlings to biosolids enriched with Cu, Ni and Zn in three Mediterranean soils. <i>Environ. Pollu.</i>, 145:316-323. doi:10.1016/j.jenvpol.2006.03.005. http://www.sciencedirect.com/science?_ob=MImg& imagekey=B6VB54_HWFMNY-5-1& cdi=5917& user=1355690& pii=50269749106001606& orig=search& coverDate=01%2F EVOTK_sk=998549998&view=c&wchp=dGLzVIb-z5kWA&md5=5806eb847578b5fe7d4a11053991bfba&ie=/sdarticle.pdf Gajewska E and Sklodowska M. 2009. Nickel-induced changes in nitrogen metabolism in w 		
 Biofactors, 1:11-16. Dave G and Xiu RQ. 1991. Toxicity of mercury, copper, nickel, lead, and cobalt to embryos a arvae of Zebrafish, <i>Brachydanio rerio</i>. Arch. Environ. Contam. Toxicol., 21: 126-134. http://www.springerlink.com/content/k154371464164465/fulltext.pdf Ekholm P, Reinivuo H, Mattila P, Pakkala H, Koponen J, Happonen A, Hellstrom J and Dovaskainen ML. 2007. Changes in the mineral and trace element contents of cereals, fruits a vegetables in Finland. <i>J. Food Comp. Anal.</i>, 20: 487-495. doi:10.1016/j.fica.2007.02.007 Ellis DR and Salt DE. 2003. Plants, selenium and human health. <i>Current Opinion in Plant Biol.</i> 5:273-279. DOI 10.1016/S1369-5266(03)00030-X. http://www.sciencedirect.com/science? ob=MImg& imagekey=B6VS4-488W2S9-1-48. cdi=6252& user=1355690& pii=S136952660300030X& orig=search&_coverDate=06%21 E2003& sk=999939996&view=c&wchp=dGLbVzb-cskzV&md5=8b2bd0d73f287b5e575847019c680964&ie=/sdarticle.pdf EPA. 1999. Background report on fertilizer use, contaminants and regulations. http://www.epa.gov/oppt/pubs/fertilizer.pdf EPA. 2009. Nutrient Management and Fertilizer. http://www.epa.gov/agriculture/tfer.htm Eskew DL, Welch RM and Norvell WA. 1984. Nickel in higher plants. <i>Plant Physiol</i>, 76:691-6. http://www.plantphysiol.org/cgi/reprint/76/3/691?maxtoshow=&hits=10&RESULTFOR Eventes D, Disante KB, Valdecantos A, Cortina J and Vallejo VR. 2007. Response of Pinus nalepensis Mill. seedlings to biosolids enriched with Cu, Ni and Zn in three Mediterranean soils. <i>Environ. Pollu.</i>, 145:316-323. doi:10.1016/j.jenvpol.2006.03.005. http://www.sciencedirect.com/science?_ob=MImg& imagekey=B6VB54_HWFMNY-5-1& cdi=5917& user=1355690& pii=50269749106001606& orig=search& coverDate=01%2F EVOTK_sk=998549998&view=c&wchp=dGLzVIb-z5kWA&md5=5806eb847578b5fe7d4a11053991bfba&ie=/sdarticle.pdf Gajewska E and Sklodowska M. 2009. Nickel-induced changes in nitrogen metabolism in w 	Dalto	on DA, Russell SA, and Evans HJ. 1988 . Nickel as a micronutrient element for plants.
arvae of Zebrafish, <i>Brachydanio rerio</i> . Arch. Environ. Contam. Toxicol., 21: 126-134. http://www.springerlink.com/content/k154371464164465/fulltext.pdf Ekholm P, Reinivuo H, Mattila P, Pakkala H, Koponen J, Happonen A, Hellstrom J and Dvaskainen ML. 2007 . Changes in the mineral and trace element contents of cereals, fruits a vegetables in Finland. <i>J. Food Comp. Anal.</i> , 20: 487-495. <u>doi:10.1016/j.jfca.2007.02.007</u> Ellis DR and Salt DE. 2003 . Plants, selenium and human health. <i>Current Opinion in Plant Biol</i> 5:273-279. DOI 10.1016/51369-5266(03)00030-X. http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6VS4-488W259-1_ 4& cdi=6252&_user=1355690&_pii=5136952660300030X&_orig=search&_coverDate=06%21 F2003&_sk=999939996&view=c&wchp=dGLbVzb- r2skzV&md5=8b2bd0d73f287b5e575847019c680964&ie=/sdarticle.pdf EPA. 1999 . Background report on fertilizer use, contaminants and regulations. http://www.epa.gov/oppt/pubs/fertilizer.pdf EPA. 2009 . Nutrient Management and Fertilizer. <u>http://www.epa.gov/agriculture/tfer.htm</u> Eskew DL, Welch RM and Norvell WA. 1984 . Nickel in higher plants. <i>Plant Physiol</i> , 76:691-6 http://www.plantphysiol.org/cgi/reprint/76/3/691?maxtoshow=&hits=10&RESULTFOR #&searchid=1&FIRSTINDEX=0&sortspec=relevance&volume=76&firstpage=691&resource HWCIT Fuentes D, Disante KB, Valdecantos A, Cortina J and Vallejo VR. 2007 . Response of Pinus halepensis Mill. seedlings to biosolids enriched with Cu, Ni and Zn in three Mediterranean soils. <i>Environ. Pollu.</i> , 145:316-323. doi:10.1016/j.envpol.2006.03.005. http://www.sciencedirect.com/science? ob=MImg&_imagekey=B6VB5-4JWFMNY-5- L& cdi=5917&_user=1355690&_pii=50269749106001606&_orig=search&_coverDate=01%2F F2007&_sk=998549998&view=c&wchp=dGLzVIb- z5KWA&md5=5806eb847578b5fe7d4a1105399fbfba&ie=/sdarticle.pdf Gajewska E and Sklodowska M. 2009 . Nickel-induced changes in nitrogen metabolism in w		
arvae of Zebrafish, <i>Brachydanio rerio</i> . Arch. Environ. Contam. Toxicol., 21: 126-134. http://www.springerlink.com/content/k154371464164465/fulltext.pdf Ekholm P, Reinivuo H, Mattila P, Pakkala H, Koponen J, Happonen A, Hellstrom J and Dvaskainen ML. 2007 . Changes in the mineral and trace element contents of cereals, fruits a vegetables in Finland. <i>J. Food Comp. Anal.</i> , 20: 487-495. <u>doi:10.1016/j.jfca.2007.02.007</u> Ellis DR and Salt DE. 2003 . Plants, selenium and human health. <i>Current Opinion in Plant Biol</i> 5:273-279. DOI 10.1016/51369-5266(03)00030-X. http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6VS4-488W259-1_ 4& cdi=6252&_user=1355690&_pii=5136952660300030X&_orig=search&_coverDate=06%21 F2003&_sk=999939996&view=c&wchp=dGLbVzb- r2skzV&md5=8b2bd0d73f287b5e575847019c680964&ie=/sdarticle.pdf EPA. 1999 . Background report on fertilizer use, contaminants and regulations. http://www.epa.gov/oppt/pubs/fertilizer.pdf EPA. 2009 . Nutrient Management and Fertilizer. <u>http://www.epa.gov/agriculture/tfer.htm</u> Eskew DL, Welch RM and Norvell WA. 1984 . Nickel in higher plants. <i>Plant Physiol</i> , 76:691-6 http://www.plantphysiol.org/cgi/reprint/76/3/691?maxtoshow=&hits=10&RESULTFOR #&searchid=1&FIRSTINDEX=0&sortspec=relevance&volume=76&firstpage=691&resource HWCIT Fuentes D, Disante KB, Valdecantos A, Cortina J and Vallejo VR. 2007 . Response of Pinus halepensis Mill. seedlings to biosolids enriched with Cu, Ni and Zn in three Mediterranean soils. <i>Environ. Pollu.</i> , 145:316-323. doi:10.1016/j.envpol.2006.03.005. http://www.sciencedirect.com/science? ob=MImg&_imagekey=B6VB5-4JWFMNY-5- L& cdi=5917&_user=1355690&_pii=50269749106001606&_orig=search&_coverDate=01%2F F2007&_sk=998549998&view=c&wchp=dGLzVIb- z5KWA&md5=5806eb847578b5fe7d4a1105399fbfba&ie=/sdarticle.pdf Gajewska E and Sklodowska M. 2009 . Nickel-induced changes in nitrogen metabolism in w	2	
http://www.springerlink.com/content/k154371464164465/fulltext.pdf Ekholm P, Reinivuo H, Mattila P, Pakkala H, Koponen J, Happonen A, Hellstrom J and Dvaskainen ML. 2007. Changes in the mineral and trace element contents of cereals, fruits a vegetables in Finland. J. Food Comp. Anal., 20: 487-495. doi:10.1016/j.jfca.2007.02.007 Ellis DR and Salt DE. 2003. Plants, selenium and human health. Current Opinion in Plant Biol 5:273-279. DOI 10.1016/51369-5266(03)00030-X. http://www.sciencedirect.com/science? ob=MImg&_imagekey=B6VS4-488W259-1- t& cdi=6252& user=1355690& pii=5136952660300030X& org=search&_coverDate=06%2I F2003&_sk=999939996&view=c&wchp=dGLbVzb- r2582V&md5=8b2bd0d73f287b5e575847019c680964&ie=/sdarticle.pdf EPA. 1999. Background report on fertilizer use, contaminants and regulations. http://www.epa.gov/oppt/pubs/fertilizer.pdf EPA. 2009. Nutrient Management and Fertilizer. http://www.epa.gov/agriculture/tfer.htm Eskew DL, Welch RM and Norvell WA. 1984. Nickel in higher plants. Plant Physiol, 76:691-6 http://www.plantphysiol.org/cgi/reprint/76/3/691?maxtoshow=&hits=10&RESULTFOR #&searchid=1&FIRSTINDEX=0&sortspec=relevance&volume=76&firstpage=691&resource HWCIT Fuentes D, Disante KB, Valdecantos A, Cortina J and Vallejo VR. 2007. Response of Pinus halepensis Mill. seedlings to biosolids enriched with Cu, Ni and Zn in three Mediterranean soils. Environ. Pollu., 145:316-323. doi:10.1016/j.envpol.2006.03.005. http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6VB5-4JWFMNY-5- L& cdi=5917&_user=1355690&_pii=50269749106001606&_orig=search&_coverDate=01%2F F2007&_sk=998549998&view=c&ewchp=dGLzVIb- cSkWA&md5=5806eb847578b5fe7d4a1105399fbfba&ie=/sdarticle.pdf Gajewska E and Sklodowska M. 2009. Nickel-induced changes in nitrogen metabolism in w	Dave	G and Xiu RQ. 1991. Toxicity of mercury, copper, nickel, lead, and cobalt to embryos ar
Ekholm P, Reinivuo H, Mattila P, Pakkala H, Koponen J, Happonen A, Hellstrom J and Dvaskainen ML. 2007 . Changes in the mineral and trace element contents of cereals, fruits a vegetables in Finland. <i>J. Food Comp. Anal.</i> , 20: 487-495. doi:10.1016/j.jfca.2007.02.007 Ellis DR and Salt DE. 2003 . Plants, selenium and human health. <i>Current Opinion in Plant Biol</i> 5:273-279. DOI 10.1016/S1369-5266(03)00030-X. http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6VS4-488W259-1- t& cdi=6252& user=1355690& pii=S136952660300030X& orig=search&_coverDate=06%2I F2003&_sk=999939996&view=c&wchp=dGLbVzb- zSkzV&md5=8b2bd0d73f287b5e575847019c680964&ie=/sdarticle.pdf EPA. 1999 . Background report on fertilizer use, contaminants and regulations. http://www.epa.gov/oppt/pubs/fertilizer.pdf EPA. 2009 . Nutrient Management and Fertilizer. http://www.epa.gov/agriculture/tfer.htm Eskew DL, Welch RM and Norvell WA. 1984 . Nickel in higher plants. <i>Plant Physiol</i> , 76:691-6 http://www.plantphysiol.org/cgi/reprint/76/3/691?maxtoshow=&hits=10&RESULTFOF =&searchid=1&FIRSTINDEX=0&sortspec=relevance&volume=76&firstpage=691&resource HWCTT Fuentes D, Disante KB, Valdecantos A, Cortina J and Vallejo VR. 2007 . Response of Pinus nalepensis Mill. seedlings to biosolids enriched with Cu, Ni and Zn in three Mediterranean soils. <i>Environ. Pollu.</i> , 145:316-323. doi:10.1016/j.envpol.2006.03.005. http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6VB5-4JWFMNY-5- L& cdi=S917& user=1335690& pii=S0269749106001606&_orig=search&_coverDate=01%2F F2007& sk=998549998&view=c&wchp=dGLzVIb- cSkWA&md5=5806eb847578b5fe7d4a1105399fbba&ie=/sdarticle.pdf Gajewska E and Sklodowska M. 2009 . Nickel-induced changes in nitrogen metabolism in w	larva	e of Zebrafish, Brachydanio rerio. Arch. Environ. Contam. Toxicol., 21: 126-134.
 Dvaskainen ML. 2007. Changes in the mineral and trace element contents of cereals, fruits a vegetables in Finland. <i>J. Food Comp. Anal.</i>, 20: 487-495. doi:10.1016/j.jfca.2007.02.007 Ellis DR and Salt DE. 2003. Plants, selenium and human health. <i>Current Opinion in Plant Biol.</i> 5:273-279. DOI 10.1016/S1369-5266(03)00030-X. http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6VS4-488W2S9-1-4& cdi=6252& user=1355690& pii=S136952660300030X& orig=search& coverDate=06%2IF2003& sk=999939996&view=c&wchp=dGLbVzb-z5kzV&md5=8b2bd0d73f287b5e575847019c680964&ie=/sdarticle.pdf EPA. 1999. Background report on fertilizer use, contaminants and regulations. http://www.epa.gov/oppt/pubs/fertilizer.pdf EPA. 2009. Nutrient Management and Fertilizer. http://www.epa.gov/agriculture/tfer.htm Eskew DL, Welch RM and Norvell WA. 1984. Nickel in higher plants. <i>Plant Physiol</i>, 76:691-6 http://www.plantphysiol.org/cgi/reprint/76/3/691?maxtoshow=&hits=10&RESULTFOR Eventes D, Disante KB, Valdecantos A, Cortina J and Vallejo VR. 2007. Response of Pinus halepensis Mill. seedlings to biosolids enriched with Cu, Ni and Zn in three Mediterranean soils. <i>Environ. Pollu.</i>, 145:316-323. doi:10.1016/j.envpol.2006.03.005. http://www.sciencedirect.com/science? ob=MImg&_imagekey=B6VB5-4[WFMINY-5-1& Cdi=5917& user=1355690& pii=S0269749106001606& orig=search& coverDate=01%2F F2007& sk=998&view=c&wchp=dGLzVIb-v5-1& cdi=5917& user=1355690& pii=S0269749106001606& orig=search& coverDate=01%2F <td></td><td></td>		
 Dvaskainen ML. 2007. Changes in the mineral and trace element contents of cereals, fruits a vegetables in Finland. <i>J. Food Comp. Anal.</i>, 20: 487-495. doi:10.1016/j.jfca.2007.02.007 Ellis DR and Salt DE. 2003. Plants, selenium and human health. <i>Current Opinion in Plant Biol.</i> 5:273-279. DOI 10.1016/S1369-5266(03)00030-X. http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6VS4-488W2S9-1-4& cdi=6252& user=1355690& pii=S136952660300030X& orig=search& coverDate=06%2IF2003& sk=999939996&view=c&wchp=dGLbVzb-z5kzV&md5=8b2bd0d73f287b5e575847019c680964&ie=/sdarticle.pdf EPA. 1999. Background report on fertilizer use, contaminants and regulations. http://www.epa.gov/oppt/pubs/fertilizer.pdf EPA. 2009. Nutrient Management and Fertilizer. http://www.epa.gov/agriculture/tfer.htm Eskew DL, Welch RM and Norvell WA. 1984. Nickel in higher plants. <i>Plant Physiol</i>, 76:691-6 http://www.plantphysiol.org/cgi/reprint/76/3/691?maxtoshow=&hits=10&RESULTFOR Eventes D, Disante KB, Valdecantos A, Cortina J and Vallejo VR. 2007. Response of Pinus halepensis Mill. seedlings to biosolids enriched with Cu, Ni and Zn in three Mediterranean soils. <i>Environ. Pollu.</i>, 145:316-323. doi:10.1016/j.envpol.2006.03.005. http://www.sciencedirect.com/science? ob=MImg&_imagekey=B6VB5-4[WFMINY-5-1& Cdi=5917& user=1355690& pii=S0269749106001606& orig=search& coverDate=01%2F F2007& sk=998&view=c&wchp=dGLzVIb-v5-1& cdi=5917& user=1355690& pii=S0269749106001606& orig=search& coverDate=01%2F <td>_</td><td></td>	_	
 vegetables in Finland. J. Food Comp. Anal., 20: 487-495. doi:10.1016/j.jfca.2007.02.007 Ellis DR and Salt DE. 2003. Plants, selenium and human health. Current Opinion in Plant Biol. 5:273-279. DOI 10.1016/51369-5266(03)00030-X. http://www.sciencedirect.com/science? ob=MImg&_imagekey=B6VS4-488W2S9-1-4&_cdi=6252&_user=1355690&_pii=S136952660300030X& orig=search&_coverDate=06%21F2003&_sk=999939996&view=c&wchp=dGLbVzb- 45kzV&md5=8b2bd0d73f287b5e575847019c680964&eie=/sdarticle.pdf EPA. 1999. Background report on fertilizer use, contaminants and regulations. http://www.epa.gov/oppt/pubs/fertilizer.pdf EPA. 2009. Nutrient Management and Fertilizer. http://www.epa.gov/agriculture/tfer.htm Eskew DL, Welch RM and Norvell WA. 1984. Nickel in higher plants. Plant Physiol, 76:691-6 http://www.plantphysiol.org/cgi/reprint/76/3/691?maxtoshow=&hits=10&RESULTFOF &searchid=1&FIRSTINDEX=0&sortspec=relevance&volume=76&firstpage=691&resource HWCIT Fuentes D, Disante KB, Valdecantos A, Cortina J and Vallejo VR. 2007. Response of Pinus nalepensis Mill. seedlings to biosolids enriched with Cu, Ni and Zn in three Mediterranean soils. Environ. Pollu., 145:316-323. doi:10.1016/j.envpol.2006.03.005. http://www.sciencedirect.com/science? ob=MImg&_imagekey=B6VB5-4JWFMNY-5_1&_cdi=5917&_user=1355690&_pii=S0269749106001606&_orig=search&_coverDate=01%2F2007&_sk=998549998&view=c&wchp=dGLzVIb_ &gaewska E and Sklodowska M. 2009. Nickel-induced changes in nitrogen metabolism in w 	Ekho	lm P, Reinivuo H, Mattila P, Pakkala H, Koponen J, Happonen A, Hellstrom J and
 Ellis DR and Salt DE. 2003. Plants, selenium and human health. <i>Current Opinion in Plant Biol</i>, 5:273-279. DOI 10.1016/S1369-5266(03)00030-X. http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6VS4-488W2S9-1-4&cdi=6252&_user=1355690&_pii=S136952660300030X&_orig=search&_coverDate=06%21F2003&_sk=999939996&view=c&wchp=dGLbVzb-25&zV&md5=8b2bd0d73f287b5e575847019c680964&ie=/sdarticle.pdf EPA. 1999. Background report on fertilizer use, contaminants and regulations. http://www.epa.gov/oppt/pubs/fertilizer.pdf EPA. 2009. Nutrient Management and Fertilizer. http://www.epa.gov/agriculture/tfer.htm Eskew DL, Welch RM and Norvell WA. 1984. Nickel in higher plants. <i>Plant Physiol</i>, 76:691-6 http://www.plantphysiol.org/cgi/reprint/76/3/691?maxtoshow=&chits=10&RESULTFOF &searchid=1&FIRSTINDEX=0&sortspec=relevance&volume=76&firstpage=691&resource HWCIT Fuentes D, Disante KB, Valdecantos A, Cortina J and Vallejo VR. 2007. Response of Pinus halepensis Mill. seedlings to biosolids enriched with Cu, Ni and Zn in three Mediterranean soils. <i>Environ. Pollu.</i>, 145:316-323. doi:10.1016/j.envpol.2006.03.005. http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6VB5-4JWFMNY-5-1&cdi=5917&_user=1355690&_pii=S02697491060066&_orig=search&_coverDate=01%2F f2007&_sk=9988view=c&wchp=dGLzVIb- 	Ovas	kainen ML. 2007. Changes in the mineral and trace element contents of cereals, fruits an
 5:273-279. DOI 10.1016/S1369-5266(03)00030-X. http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6VS4-488W259-1-4&_cdi=6252&_user=1355690&_pii=S136952660300030X&_orig=search&_coverDate=06%21F2003&_sk=999939996&view=c&wchp=dGLbVzb-25kzV&md5=8b2bd0d73f287b5e575847019c680964&ie=/sdarticle.pdf EPA. 1999. Background report on fertilizer use, contaminants and regulations. http://www.epa.gov/oppt/pubs/fertilizer.pdf EPA. 2009. Nutrient Management and Fertilizer. http://www.epa.gov/oppt/pubs/fertilizer.pdf EPA. 2009. Nutrient Management and Fertilizer. http://www.epa.gov/agriculture/tfer.htm Eskew DL, Welch RM and Norvell WA. 1984. Nickel in higher plants. http://www.plantphysiol.org/cgi/reprint/76/3/691?maxtoshow=&hits=10&RESULTFOF=&searchid=1&FIRSTINDEX=0&sortspec=relevance&volume=76&firstpage=691&resourceHWCIT Fuentes D, Disante KB, Valdecantos A, Cortina J and Vallejo VR. 2007. Response of Pinus nalepensis Mill. seedlings to biosolids enriched with Cu, Ni and Zn in three Mediterranean soils. cience? ob=MImg&_imagekey=B6VB5-4JWFMNY-5-L&cdi=5917&_user=1355690&_pii=S0269749106001606&_orig=search&_coverDate=01%2F C2007&_sk=998549998&view=c&wchp=dGLzVIb-25&WA&md5=5806eb847578b5fe7d4a1105399fbfba&ie=/sdarticle.pdf Gajewska E and Sklodowska M. 2009. Nickel-induced changes in nitrogen metabolism in w 	veget	tables in Finland. J. Food Comp. Anal., 20: 487-495. doi:10.1016/j.jfca.2007.02.007
 5:273-279. DOI 10.1016/S1369-5266(03)00030-X. http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6VS4-488W259-1-4&_cdi=6252&_user=1355690&_pii=S136952660300030X&_orig=search&_coverDate=06%21F2003&_sk=999939996&view=c&wchp=dGLbVzb-25kzV&md5=8b2bd0d73f287b5e575847019c680964&ie=/sdarticle.pdf EPA. 1999. Background report on fertilizer use, contaminants and regulations. http://www.epa.gov/oppt/pubs/fertilizer.pdf EPA. 2009. Nutrient Management and Fertilizer. http://www.epa.gov/oppt/pubs/fertilizer.pdf EPA. 2009. Nutrient Management and Fertilizer. http://www.epa.gov/agriculture/tfer.htm Eskew DL, Welch RM and Norvell WA. 1984. Nickel in higher plants. http://www.plantphysiol.org/cgi/reprint/76/3/691?maxtoshow=&hits=10&RESULTFOF=&searchid=1&FIRSTINDEX=0&sortspec=relevance&volume=76&firstpage=691&resourceHWCIT Fuentes D, Disante KB, Valdecantos A, Cortina J and Vallejo VR. 2007. Response of Pinus nalepensis Mill. seedlings to biosolids enriched with Cu, Ni and Zn in three Mediterranean soils. cience? ob=MImg&_imagekey=B6VB5-4JWFMNY-5-L&cdi=5917&_user=1355690&_pii=S0269749106001606&_orig=search&_coverDate=01%2F C2007&_sk=998549998&view=c&wchp=dGLzVIb-25&WA&md5=5806eb847578b5fe7d4a1105399fbfba&ie=/sdarticle.pdf Gajewska E and Sklodowska M. 2009. Nickel-induced changes in nitrogen metabolism in w 		
http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6VS4-488W259-1- 4&_cdi=6252&_user=1355690&_pii=5136952660300030X&_orig=search&_coverDate=06%2I F2003&_sk=999939996&view=c&wchp=dGLbVzb- zSkzV&md5=8b2bd0d73f287b5e575847019c680964&ie=/sdarticle.pdf EPA. 1999 . Background report on fertilizer use, contaminants and regulations. http://www.epa.gov/oppt/pubs/fertilizer.pdf EPA. 2009 . Nutrient Management and Fertilizer. http://www.epa.gov/agriculture/tfer.htm Eskew DL, Welch RM and Norvell WA. 1984 . Nickel in higher plants. <i>Plant Physiol</i> , 76:691-6 http://www.plantphysiol.org/cgi/reprint/76/3/691?maxtoshow=&hits=10&RESULTFOR =&searchid=1&FIRSTINDEX=0&sortspec=relevance&volume=76&firstpage=691&resource HWCIT Fuentes D, Disante KB, Valdecantos A, Cortina J and Vallejo VR. 2007 . Response of Pinus halepensis Mill. seedlings to biosolids enriched with Cu, Ni and Zn in three Mediterranean soils. <i>Environ. Pollu.</i> , 145:316-323. doi:10.1016/j.envpol.2006.03.005. http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6VB5-4JWFMNY-5- 1&_cdi=5917&_user=1355690&_pii=S0269749106001606&_orig=search&_coverDate=01%2F F2007&_sk=998549998&view=c&wchp=dGLzVIb- zSkWA&md5=5806eb847578b5fe7d4a1105399fbfba&ie=/sdarticle.pdf Gajewska E and Sklodowska M. 2009 . Nickel-induced changes in nitrogen metabolism in w	Ellis	DR and Salt DE. 2003. Plants, selenium and human health. Current Opinion in Plant Biolo
 t& cdi=6252& user=1355690& pii=S136952660300030X& orig=search& coverDate=06%2F F2003& sk=999939996&view=c&wchp=dGLbVzb-z5kzV&md5=8b2bd0d73f287b5e575847019c680964&ie=/sdarticle.pdf EPA. 1999. Background report on fertilizer use, contaminants and regulations. http://www.epa.gov/oppt/pubs/fertilizer.pdf EPA. 2009. Nutrient Management and Fertilizer. http://www.epa.gov/oppt/pubs/fertilizer.pdf EPA. 2009. Nutrient Management and Fertilizer. http://www.epa.gov/agriculture/tfer.htm Eskew DL, Welch RM and Norvell WA. 1984. Nickel in higher plants. Plant Physiol, 76:691-6 thtp://www.plantphysiol.org/cgi/reprint/76/3/691?maxtoshow=&hits=10&RESULTFOK e&searchid=1&FIRSTINDEX=0&sortspec=relevance&volume=76&firstpage=691&resource thWCIT Fuentes D, Disante KB, Valdecantos A, Cortina J and Vallejo VR. 2007. Response of Pinus nalepensis Mill. seedlings to biosolids enriched with Cu, Ni and Zn in three Mediterranean soils. 		

1062	Germ M and Sibilj V. 2007. Selenium and plants. Acta agricultureae Slovenica 89: 65-71. DOI:
1063	10.2478/v10014-007-0008-8.
1064	http://versita.metapress.com/content/g1wl84727156r87p/fulltext.pdf
1065	
1066	Hansch R and Mendel RR. 2009. Physiological functions of mineral micronutrients (Cu, Zn, Mn,
1067	Fe, Ni, Mo, B, Cl). Curr. Opin. Plant Biol., 12:259-266. doi:10.1016/j.pbi.2009.05.006
1068	
1069	Kováčik J, Klejdus B, Hedbavny J and Bačkor M. 2009 . Nickel uptake and its effect on some
1070	nutrient levels, amino acid contents and oxidative status in Matricaria chamomilla plants. Water Air
1071	Soil Pollut., 202:199-209. http://www.springerlink.com/content/b616qj5891617621/fulltext.pdf
1072	
1073	Kramer U, Smith RD, Wenzel WW, Raskin I and Salt DE. 1997. The role of metal transport and
1074	tolerance in nickel hyperaccumulation by <i>Thlaspi goesingense</i> Halacsy. Plant Physiol., 115: 1641-
1075	1650.
1076	
1077	Kupper H, Kiipper F and Spiller M. 1996. Environmental relevance of heavy metal-substituted
1078	chlorophylls using the example of water plants. J. Experi. Botany, 47:259-266.
1079	http://jxb.oxfordjournals.org/cgi/reprint/47/2/259?maxtoshow=&hits=10&RESULTFORMAT
1080	=1&andorexacttitle=and&andorexacttitleabs=and&andorexactfulltext=and&searchid=1&FIRSTI
1081	NDEX=0&sortspec=relevance&volume=47&firstpage=259&resourcetype=HWCIT
1082	<u>Ablix ousonspec</u> relevanceuvolance 4/ unsipage 25/uresource/ype miven
1082	Lussier SM, Gentile JH and Walker J. 1985. Acute and chronic effects of heavy metals and cyanide
1085	on <i>Mysidopsis bahia</i> (Crustacean: Mysidacea). <i>Aquatic Toxicol.</i> , 7: 25-35.
1085	http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6T4G-478NRB3-4-
1085	1&_cdi=4974&_user=1355690&_pii=0166445X85900347&_orig=search&_coverDate=10%2F31%2F
1080	<u>1985&_sk=999929998&view=c&wchp=dGLbVzW-</u>
1087	<u>zSkzk&md5=378e27668fab1a3e00ef834d32ede721&ie=/sdarticle.pdf</u>
1088	<u>25K2K&IIIu5-576270081ab1a5e00e1854u52eue721&Ie-7suariicie.pur</u>
1089	McKenzie RH. 2001. Micronutrient requirements of crops. Agriculture and Rural Development.
1090	Government of Alberta. <u>http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/agdex713</u>
1091	Government of Alberta. <u>http://www1.agric.gov.ab.ca/suepartment/ueptuocs.nsi/aii/aguex/15</u>
	Michigan State University 1004 Casendary and micronythicate for reactables and field group. Pro
1093	Michigan State University. 1994 . Secondary and micronutrients for vegetables and field crops. By:
1094	Vitosh ML, Marncke DD and Lucas RE. Michigan State University – Extension
1095	(<u>https://www.msu.edu/~warncke/E0486.pdf</u>).
1096	Nienie TM 1000 The effect of a linear and a ideal and a main loss that for a linear
1097	Nieminen TM. 1998 . The effect of soil copper and nickel on survival and growth of Scots pine
1098	saplings. <i>Chemosphere</i> , 36: 745-750.
1099	http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6V74-3SX6XSC-S-
1100	<u>1&_cdi=5832&_user=1355690&_pii=S0045653597101187&_orig=search&_coverDate=02%2F28%2</u>
1101	<u>F1998&_sk=999639995&view=c&wchp=dGLbVzW-</u>
1102	zSkzV&md5=7e5236b6e31d2ff2d917f224bd3bcb94&ie=/sdarticle.pdf
1103	
1104	Ohio State University. Micronutrient disorders. By: Pasian CC. Ohio State University – Extension
1105	(<u>http://ohioline.osu.edu/hyg-fact/1000/1252.html</u>).
1106	
1107	Pollard AJ, Powell KD, Harper FA and Smith JAC. 2002. The genetic basis of metal
1108	hyperaccumulation in plants. Critical Rev. Plant Sci., 21:539-566.
1109	http://pdfserve.informaworld.com/438558_731230021_727073435.pdf
1110	
1111	Purdue University. Role of micronutrients in efficient crop production. By: Mengel DB. Purdue
1112	University – Extension (<u>http://www.ces.purdue.edu/extmedia/AY/AY-239.html</u>).

1114	Tejada-Jimenez M, Galvan A, Fernandez E and Llamas A. 2009. Homeostasis of the
1115	micronutrients Ni, Mo and Cl with specific biochemical functions. Curr. Opin. Plant Biol., 12:358-
1116	363. doi:10.1016/j.pbi.2009.04.012
1117	
1118	Terry N, Zaye AM, de Souza MP and Tarun AS. 2000. Selenium in higher plants. Annu. Rev. Plant
1119	Physiol. Plant Mol. Biol. 51: 401-432.
1120	http://arjournals.annualreviews.org/doi/pdf/10.1146/annurev.arplant.51.1.401
1121	
1122	University of Florida. Estimating copper, manganese and zinc micronutrients in fungicide
1123	applications. By: Poh BL, Gevens A, Simonne E and Snodgrass C. University of Florida – The
1124	Institute of Food and Agricultural Sciences (<u>http://edis.ifas.ufl.edu/hs1159</u>).
1125	
1126	University of Georgia. Cultural management of commercial pecan orchards. By: Wells L and
1127	Harrison KA. University of Georgia-Extension
1128	(http://pubs.caes.uga.edu/caespubs/pubs/PDF/B1304.pdf).
1129	
1130	University of Hawaii-Manoa. Soil nutrient management for Maui County. By: University of
1131	Hawaii-Manoa (http://www.ctahr.hawaii.edu/mauisoil/c_nutrients04.aspx).
1132	
1133	University of Maryland. Micronutrients. By: Blessington TM, Clement DL and Williams KG.
1134	University of Maryland Extension (<u>http://extension.umd.edu/publications/pdfs/fs868.pdf</u>).
1135	••••••••••••••••••••••••••••••••••••••
1136	University of Nebraska. Use and management of micronutrient fertilizers in Nebraska. By:
1137	Wortmann CS, Ferguson RB, Hergert GH and Shapiro CA. University of Nebraska
1138	(http://elkhorn.unl.edu/epublic/pages/publicationD.jsp?publicationId=988).
1139	(<u></u>
1140	USDA. 2000 . Heavy metal soil contamination. <u>ftp://ftp-</u>
1141	fc.sc.egov.usda.gov/IL/urbanmnl/appendix/u03.pdf
1142	
1143	van Straaten, P. 2002. Rocks for Crops: Agrominerals of sub-Saharan Africa. ICRAF, Nairobi,
1144	Kenya, 338pp. http://www.uoguelph.ca/~geology/rocks_for_crops/
1145	$\int f = \frac{1}{1} \frac{f}{f} \frac{f}{f$
1146	Wood BW, Reilly CC and Nyczepir AP. 2004. Mouse-ear of pecan: A nickel deficiency. Hort Sci.,
1147	39: 1238-1242.
1148	
1149	Wood BW, Chaney R and Crawford M. 2006. Correcting micronutrient deficiency using metal
1150	hyperaccumulators: <i>Alyssum</i> Biomass as a natural product for nickel deficiency correction. <i>Hort</i>
1151	<i>Sci.</i> , 41: 1231-1234.
1152	
1153	World Bank.Nickel: Nickel smelting and refining.
1154	http://www.ifc.org/ifcext/enviro.nsf/AttachmentsByTitle/gui_nickel_WB/\$FILE/nickel_PPA
1155	H.pdf
	Yang X. Baligar VC. Martens DC and Clark RB. 1996 Plant tolerance to nickel toxicity [,] II Nickel
	Zhu YG, Pilon-Smits EAH, Zhao FI and Williams PN 2009 Selenium in higher plants:
1162	
1156 1157 1158 1159 1160 1161	Yang X, Baligar VC, Martens DC and Clark RB. 1996 . Plant tolerance to nickel toxicity: II Nick effects on influx and transport of mineral nutrients in four plant species. <i>J. Plant Nutri.</i> , 19: 26 279. <u>http://ddr.nal.usda.gov/bitstream/10113/42171/1/IND20586311.pdf</u> Zhu YG, Pilon-Smits EAH, Zhao FJ and Williams PN. 2009 . Selenium in higher plants:
162	understanding mechanisms for biofortification and phytoremediation. <i>Trends in Plant Science</i> 14:

1163 436-442. <u>doi:10.1016/j.tplants.2009.06.006</u>