Magnesium Chloride Handling/Processing

1		lling/Pro	Ŭ
1 2	Identification	of Peti	tioned Substance
_		15	
3	There are two forms of magnesium chloride:	16	
4	0	17	
5	Chemical Names: MgCl ₂ · 6H ₂ O	18	Chemical Names: MgCl ₂
6	Magnesium chloride hexahydrate	19	Magnesium chloride anhydrous
7	Magnesium chloride	20	Magnesium chloride
8	Magnesium dichloride	21	Magnesium dichloride
9	Magnesium chloride $6H_2O$		CAC Number 77 9(20.2)
10	Magnesium chloride, 6-hydrate		CAS Number: 7786-30-3
11 12	Magnesium chloride hydrate		Other Codes: E511, INS511 (both forms)
12	Magnesium chloride, hydrous		Other Codes. ESTI, INSSTI (both forms)
13 14	CAS Number : 7791-18-6		
22			
23	Summar	v of Pe	titioned Use
		y of i c	
24 25	Magnesium chloride is currently allowed under	the Nat	ional Organic Program regulations at 7 CFR
23 26	205.605(b) as a nonagricultural synthetic substar		
20 27			edients or food group(s))." The current annotation
28			agnesium chloride in organic food processing are as
29	a firming agent in tofu processing and as a source		
30	formula. It is also allowed by the FDA as a flavo		
		ing ago	in, adjuvani, and as a nument supplement.
31		ing age	ent, aujuvant, and as a nutrient supplement.
31 32		ing age	en, adjuvant, and as a nutrient supplement.
	-		titioned Substance
32 33	-		
32	-		
32 33 34	Characterizatio	on of Pe	
32 33 34 35 36 37	Characterization Composition of the Substance: Magnesium chloride is the simple salt of the halo noted in the Identification section above, two for	on of Pe ogen ch rms of n	titioned Substance
32 33 34 35 36 37 38	Characterization <u>Composition of the Substance:</u> Magnesium chloride is the simple salt of the halo	on of Pe ogen ch rms of n	titioned Substance lorine and the alkaline earth metal magnesium. As
32 33 34 35 36 37 38 39	Characterization Composition of the Substance: Magnesium chloride is the simple salt of the halo noted in the Identification section above, two for analytically defined and commercially available	on of Pe ogen ch rms of n	titioned Substance lorine and the alkaline earth metal magnesium. As nagnesium chloride (hexahydrate or anhydrous) are
32 33 34 35 36 37 38 39 40	Characterization Composition of the Substance: Magnesium chloride is the simple salt of the halo noted in the Identification section above, two for analytically defined and commercially available Magnesium chloride hexahydrate is the form of	on of Pe ogen ch rms of n magnes	titioned Substance lorine and the alkaline earth metal magnesium. As nagnesium chloride (hexahydrate or anhydrous) are ium chloride that is authorized by the FDA for use
32 33 34 35 36 37 38 39 40 41	Characterization <u>Composition of the Substance</u> : Magnesium chloride is the simple salt of the half noted in the Identification section above, two for analytically defined and commercially available Magnesium chloride hexahydrate is the form of as a direct food substance (21 CFR 184.1426). It is	on of Pe ogen ch rms of n magnes s descril	titioned Substance lorine and the alkaline earth metal magnesium. As nagnesium chloride (hexahydrate or anhydrous) are sium chloride that is authorized by the FDA for use bed in the Merck Index and occurs as colorless,
32 33 34 35 36 37 38 39 40 41 42	Characterization <u>Composition of the Substance:</u> Magnesium chloride is the simple salt of the hale noted in the Identification section above, two for analytically defined and commercially available Magnesium chloride hexahydrate is the form of as a direct food substance (21 CFR 184.1426). It is odorless flakes, crystals, granules or lumps (Bud	on of Pe ogen ch rms of n magnes s descril lavari 19	titioned Substance lorine and the alkaline earth metal magnesium. As nagnesium chloride (hexahydrate or anhydrous) are sium chloride that is authorized by the FDA for use bed in the Merck Index and occurs as colorless, 996). The Joint FAO/WHO Expert Committee on
32 33 34 35 36 37 38 39 40 41 42 43	Characterization <u>Composition of the Substance:</u> Magnesium chloride is the simple salt of the hale noted in the Identification section above, two for analytically defined and commercially available Magnesium chloride hexahydrate is the form of as a direct food substance (21 CFR 184.1426). It is odorless flakes, crystals, granules or lumps (Bud Food Additives (JECFA) and the Food Chemical	on of Pe ogen ch rms of n magnes s descril lavari 19 s Codey	titioned Substance lorine and the alkaline earth metal magnesium. As magnesium chloride (hexahydrate or anhydrous) are sium chloride that is authorized by the FDA for use bed in the Merck Index and occurs as colorless, 096). The Joint FAO/WHO Expert Committee on a (FCC) require that the material assays at 99% to
 32 33 34 35 36 37 38 39 40 41 42 43 44 	Characterization <u>Composition of the Substance:</u> Magnesium chloride is the simple salt of the halo noted in the Identification section above, two for analytically defined and commercially available Magnesium chloride hexahydrate is the form of as a direct food substance (21 CFR 184.1426). It is odorless flakes, crystals, granules or lumps (Bud Food Additives (JECFA) and the Food Chemical 105% MgCl ₂ 6H ₂ O (JECFA 1980; U. S. Pharmaco	on of Pe ogen ch rms of n magnes s descril lavari 19 s Codey	titioned Substance lorine and the alkaline earth metal magnesium. As nagnesium chloride (hexahydrate or anhydrous) are sium chloride that is authorized by the FDA for use bed in the Merck Index and occurs as colorless, 996). The Joint FAO/WHO Expert Committee on
32 33 34 35 36 37 38 39 40 41 42 43 44 45	Characterization <u>Composition of the Substance:</u> Magnesium chloride is the simple salt of the hale noted in the Identification section above, two for analytically defined and commercially available Magnesium chloride hexahydrate is the form of as a direct food substance (21 CFR 184.1426). It is odorless flakes, crystals, granules or lumps (Bud Food Additives (JECFA) and the Food Chemical	on of Pe ogen ch rms of n magnes s descril lavari 19 s Codey	titioned Substance lorine and the alkaline earth metal magnesium. As magnesium chloride (hexahydrate or anhydrous) are sium chloride that is authorized by the FDA for use bed in the Merck Index and occurs as colorless, 096). The Joint FAO/WHO Expert Committee on a (FCC) require that the material assays at 99% to
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	Characterization <u>Composition of the Substance</u> : Magnesium chloride is the simple salt of the half noted in the Identification section above, two for analytically defined and commercially available. Magnesium chloride hexahydrate is the form of as a direct food substance (21 CFR 184.1426). It is odorless flakes, crystals, granules or lumps (Bud Food Additives (JECFA) and the Food Chemical 105% MgCl ₂ 6H ₂ O (JECFA 1980; U. S. Pharmaco far less expensive than the anhydrous form.	on of Pe ogen ch rms of n magnes s descril lavari 19 s Codex peia 201	titioned Substance lorine and the alkaline earth metal magnesium. As magnesium chloride (hexahydrate or anhydrous) are sium chloride that is authorized by the FDA for use bed in the Merck Index and occurs as colorless, 096). The Joint FAO/WHO Expert Committee on a (FCC) require that the material assays at 99% to 10). The hexahydrate form is far more available and
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	Characterization <u>Composition of the Substance:</u> Magnesium chloride is the simple salt of the hale noted in the Identification section above, two for analytically defined and commercially available Magnesium chloride hexahydrate is the form of as a direct food substance (21 CFR 184.1426). It is odorless flakes, crystals, granules or lumps (Bud Food Additives (JECFA) and the Food Chemical 105% MgCl ₂ 6H ₂ O (JECFA 1980; U. S. Pharmaco far less expensive than the anhydrous form. Anhydrous magnesium chloride as described in	on of Pe ogen ch rms of n magnes s descril lavari 19 ls Code peia 201 the Me	titioned Substance lorine and the alkaline earth metal magnesium. As hagnesium chloride (hexahydrate or anhydrous) are hum chloride that is authorized by the FDA for use bed in the Merck Index and occurs as colorless, 096). The Joint FAO/WHO Expert Committee on a (FCC) require that the material assays at 99% to 10). The hexahydrate form is far more available and rck Index is prepared from magnesium ammonium
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	Characterization Composition of the Substance: Magnesium chloride is the simple salt of the halo noted in the Identification section above, two for analytically defined and commercially available Magnesium chloride hexahydrate is the form of as a direct food substance (21 CFR 184.1426). It is odorless flakes, crystals, granules or lumps (Bud Food Additives (JECFA) and the Food Chemical 105% MgCl ₂ 6H ₂ O (JECFA 1980; U. S. Pharmaco far less expensive than the anhydrous form. Anhydrous magnesium chloride as described in chloride hexahydrate in the presence of hydroch	on of Pe ogen ch rms of n magnes s descril lavari 19 ls Code peia 201 the Me	titioned Substance lorine and the alkaline earth metal magnesium. As magnesium chloride (hexahydrate or anhydrous) are sium chloride that is authorized by the FDA for use bed in the Merck Index and occurs as colorless, 096). The Joint FAO/WHO Expert Committee on a (FCC) require that the material assays at 99% to 10). The hexahydrate form is far more available and
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	Characterization <u>Composition of the Substance:</u> Magnesium chloride is the simple salt of the hale noted in the Identification section above, two for analytically defined and commercially available Magnesium chloride hexahydrate is the form of as a direct food substance (21 CFR 184.1426). It is odorless flakes, crystals, granules or lumps (Bud Food Additives (JECFA) and the Food Chemical 105% MgCl ₂ 6H ₂ O (JECFA 1980; U. S. Pharmaco far less expensive than the anhydrous form. Anhydrous magnesium chloride as described in	on of Pe ogen ch rms of n magnes s descril lavari 19 ls Code peia 201 the Me	titioned Substance lorine and the alkaline earth metal magnesium. As hagnesium chloride (hexahydrate or anhydrous) are hum chloride that is authorized by the FDA for use bed in the Merck Index and occurs as colorless, 096). The Joint FAO/WHO Expert Committee on a (FCC) require that the material assays at 99% to 10). The hexahydrate form is far more available and rck Index is prepared from magnesium ammonium
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	Characterization Composition of the Substance: Magnesium chloride is the simple salt of the halo noted in the Identification section above, two for analytically defined and commercially available. Magnesium chloride hexahydrate is the form of as a direct food substance (21 CFR 184.1426). It is odorless flakes, crystals, granules or lumps (Bud Food Additives (JECFA) and the Food Chemical 105% MgCl ₂ 6H ₂ O (JECFA 1980; U. S. Pharmaco far less expensive than the anhydrous form. Anhydrous magnesium chloride as described in chloride hexahydrate in the presence of hydroch- used as a chemical reagent.	on of Pe ogen ch rms of n magnes s descril lavari 19 s Codex peia 201 . the Me lloric ac	titioned Substance lorine and the alkaline earth metal magnesium. As hagnesium chloride (hexahydrate or anhydrous) are hum chloride that is authorized by the FDA for use bed in the Merck Index and occurs as colorless, 096). The Joint FAO/WHO Expert Committee on a (FCC) require that the material assays at 99% to 10). The hexahydrate form is far more available and rck Index is prepared from magnesium ammonium
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	Characterization Composition of the Substance: Magnesium chloride is the simple salt of the half noted in the Identification section above, two for analytically defined and commercially available. Magnesium chloride hexahydrate is the form of as a direct food substance (21 CFR 184.1426). It is odorless flakes, crystals, granules or lumps (Bud Food Additives (JECFA) and the Food Chemical 105% MgCl ₂ 6H ₂ O (JECFA 1980; U. S. Pharmaco far less expensive than the anhydrous form. Anhydrous magnesium chloride as described in chloride hexahydrate in the presence of hydroch used as a chemical reagent. Both forms of magnesium chloride are hygrosco	on of Pe ogen ch rms of n magnes s descril lavari 19 s Codes peia 201 the Me iloric ac	titioned Substance lorine and the alkaline earth metal magnesium. As hagnesium chloride (hexahydrate or anhydrous) are hum chloride that is authorized by the FDA for use bed in the Merck Index and occurs as colorless, 096). The Joint FAO/WHO Expert Committee on a (FCC) require that the material assays at 99% to 10). The hexahydrate form is far more available and rck Index is prepared from magnesium ammonium id (Budavari 1996). It occurs as soft leaflets and is
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	Characterization Composition of the Substance: Magnesium chloride is the simple salt of the half noted in the Identification section above, two for analytically defined and commercially available. Magnesium chloride hexahydrate is the form of as a direct food substance (21 CFR 184.1426). It is odorless flakes, crystals, granules or lumps (Bud Food Additives (JECFA) and the Food Chemical 105% MgCl ₂ 6H ₂ O (JECFA 1980; U. S. Pharmaco far less expensive than the anhydrous form. Anhydrous magnesium chloride as described in chloride hexahydrate in the presence of hydroch used as a chemical reagent. Both forms of magnesium chloride are hygrosco	on of Pe ogen ch rms of n magnes s descril lavari 19 s Codes peia 201 the Me iloric ac	titioned Substance lorine and the alkaline earth metal magnesium. As hagnesium chloride (hexahydrate or anhydrous) are sium chloride that is authorized by the FDA for use bed in the Merck Index and occurs as colorless, 096). The Joint FAO/WHO Expert Committee on a (FCC) require that the material assays at 99% to 10). The hexahydrate form is far more available and rck Index is prepared from magnesium ammonium id (Budavari 1996). It occurs as soft leaflets and is orb water) and deliquescent (absorb enough water
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	Characterization Composition of the Substance: Magnesium chloride is the simple salt of the half noted in the Identification section above, two for analytically defined and commercially available. Magnesium chloride hexahydrate is the form of as a direct food substance (21 CFR 184.1426). It is odorless flakes, crystals, granules or lumps (Bud Food Additives (JECFA) and the Food Chemical 105% MgCl ₂ 6H ₂ O (JECFA 1980; U. S. Pharmaco far less expensive than the anhydrous form. Anhydrous magnesium chloride as described in chloride hexahydrate in the presence of hydroch used as a chemical reagent. Both forms of magnesium chloride are hygrosco	on of Pe ogen ch rms of n magnes s descril lavari 19 lavari 19 lavari 20 bis Codex peia 20 the Me iloric ac opic (abs ngredier	titioned Substance lorine and the alkaline earth metal magnesium. As hagnesium chloride (hexahydrate or anhydrous) are hium chloride that is authorized by the FDA for use bed in the Merck Index and occurs as colorless, 096). The Joint FAO/WHO Expert Committee on a (FCC) require that the material assays at 99% to 10). The hexahydrate form is far more available and rck Index is prepared from magnesium ammonium id (Budavari 1996). It occurs as soft leaflets and is orb water) and deliquescent (absorb enough water ht must be closed tightly to avoid moisture pick-up.

56

57

58 Source or Origin of the Substance:

- 59 The most common sources of magnesium chloride hexahydrate are "derived from sea water" in the very
- 60 broadest sense. Mineral deposits of magnesium chloride were created thousands to millions of years ago
- 61 when isolated sea water bodies dried up and their mineral constituents crystallized out (Butts 2004). These
- 62 mineral deposits are tapped by solution mining, which involves pumping water thousands of feet below
- 63 the earth's surface to dissolve the minerals and form brines. The brines are pumped to the surface and
- 64 separated into the component mineral salts. Other important brine sources are active terminal lakes, such
- as the Great Salt Lake in North America and the Dead Sea in Israel and Jordan (Butts 2004). Underground
- brine can be found in the remains of ancient terminal lakes that have dried up, such as under Midland,
- 67 Michigan (Chemical Heritage Foundation 2015). The production of sea salt by solarization has been an 68 important human activity for the last three millennia. Sodium chloride-depleted solar brine is a good
- source of magnesium chloride, since magnesium chloride makes up 17% of sea water solids (Aikawa
- 1991). Evaluation Question 1 provides a full description of these natural sources and how the extraction
- and isolation of magnesium chloride is accomplished.
- 72
- 73 Magnesium chloride can also be produced by chemical synthesis, which is also described in Evaluation
- 74 Question 1.
- 75

76

77 Properties of the Substance

- 78 Physical and chemical properties of the substance are summarized in Table 1.
- 79
- 80 Table 1: Physical and Chemical Properties of Magnesium Chloride Hexahydrate (Budavari 1996; U. S.
- 81 Pharmacopeia 2010; JECFA 1980)

Property	Value
CAS Reg. Number	7791-18-6
Chemical formula	$MgCl_2 \cdot 6 H_2O$
Molar mass	203.30
Appearance	Deliquescent crystals
Solubility, cold water	1 g in 0.6 mL (~ 166 g/100mL)
Solubility, 100°C water	1 g in 0.3 mL (~ 333 g/100mL)
Solubility, alcohol	1 g in 2 mL ethanol (~50 g/100mL)

82

- 83 The two significant characteristics of magnesium chloride hexahydrate that enable its isolation and
- 84 purification from natural sources are its high water solubility (Lewis 1997b) and its high alcohol solubility.
- 85 86

87 Specific Uses of the Substance:

- 88 The primary use of magnesium chloride hexahydrate in organic food processing is as a firming agent for
- tofu. Magnesium chloride hexahydrate is also used as a source of the essential mineral magnesium in
- 90 infant formula (21 CFR 184.1426(c)(2)).
- 91 92

93 Approved Legal Uses of the Substance:

- Magnesium chloride hexahydrate is affirmed by the FDA as Generally Recognized As Safe (GRAS) as a
 food ingredient (21 CFR 184.1426). It is allowed by the FDA as a flavoring agent, adjuvant, nutrient
- 96 supplement, and may be used in infant formula.97
- 98 The EPA regulates magnesium chloride as a pesticide on List D, pesticides of less concern (EPA 1998).
- Magnesium chloride has also been used to treat bovine hypomagnesemia (low blood magnesium levels)(Budavari 1996).
- 101
- 102

103 Action of the Substance:

104 Magnesium and calcium are coagulating agents that interact with the protein in soymilk to form tofu. 105 Magnesium chloride easily dissolves in water and congeals soymilk quickly, generating smooth or rough 106 textured curd depending on the concentration of magnesium chloride solution (Arii and Takenaka 2013). 107 108 **Combinations of the Substance:** 109 110 Magnesium chloride hexahydrate is commercially available as colorless, odorless flakes, crystals, granules or lumps. Both JECFA and FCC require that the material assays at 99% to 105% MgCl₂ 6H₂O. Commercial 111 112 sources contain no additional or ancillary ingredients (e.g., inert ingredients, stabilizers, preservatives, 113 carriers, anti-caking agents or other materials). 114 115 116 Status 117 118 **Historic Use:** The practice of making tofu to utilize the protein of the soybean originated about 2,000 years ago. A 119 120 material called "nigari" is a traditional 'natural' solidifying agent for making tofu in Japan. Nigari consists 121 of the natural components of sea water including magnesium chloride, magnesium sulfate and other 122 elements of sea water that remain after sodium chloride crystallizes from solar brine (Shurtleff and Aoyagi 123 1975). 124 125 126 **Organic Foods Production Act, USDA Final Rule:** 127 The National Organic Standards Board (NOSB) reviewed magnesium chloride hexahydrate in 1995 for inclusion on the National List of Approved and Prohibited Substances for use as a color retention agent, a 128 129 firming agent for tofu, and a processing aid in sugar beet processing. The Final Rule creating the NOP regulations on December 21, 2000 included a listing of "magnesium sulfate - derived from sea water" on 130 131 the National List at §205.605(b) as an allowed synthetic (USDA Agricultural Marketing Service 2000). 132 133 Documents from the original NOSB review in 1995 are somewhat unclear regarding the classification of the various source of magnesium chloride as synthetic or nonsynthetic. The Technical Advisory Panel (TAP) 134 135 review from 1995 indicates that one TAP reviewer categorized all sources of magnesium chloride as 136 synthetic, and the other TAP reviewer categorized magnesium chloride from brine as nonsynthetic (NOSB 137 1995a). The minutes from the October-November 1995 NOSB Meeting indicate that the NOSB decided to 138 "prohibit non-synthetic magnesium chloride (from sea water)" and "allow only the synthetic form if 139 extracted from sea water" (NOSB 1995b). The NOSB Materials Database document from 1999 140 acknowledges that magnesium chloride is available from nonsynthetic and synthetic sources (NOSB 1999). 141 142 The NOSB has also reviewed magnesium chloride for use in crop production. In 1996, the NOSB reviewed a 143 petition to add magnesium chloride hexahydrate to §205.601 for use as a foliar source of magnesium, as a 144 dust suppressant, as a potential desiccant or defoliant for cotton, and as an herbicide. The NOSB voted to 145 classify magnesium chloride as nonsynthetic when extracted from brine, seawater and salt deposits. Since 146 magnesium chloride is not listed at §205.602 as a prohibited nonsynthetic substance, nonsynthetic sources 147 are considered to be allowed in organic crop production. 148 149 150 **International Organic Food Processing Standards** 151 152 **Canadian General Standards Board Permitted Substances List** Magnesium chloride is a permitted processing substance listed in CAN/CGSB-32.311-2015, Table 6.3, 153 154 "ingredients classified as food additives," with the annotation, "derived from seawater." 155 156 CODEX Alimentarius Commission, Guidelines for the Production, Processing, Labelling and Marketing 157 of Organically Produced Foods (GL 32-1999)

November 30, 2016

- 158 The Codex organic guidelines permit the use of magnesium chloride (INS 511) in food category 06.8, 159 soybean products (excluding soybean products of food category 12.9 and fermented soybean products of food category 12.10); food category 12.9.1, soybean protein products; and food category 12.10, fermented 160 161 soybean products. 162 European Economic Community (EEC) Council Regulation, EC No. 834/2007 and 889/2008 163 164 The European Community regulation permits the use of the magnesium chloride (or "nigari") in processing organic foods of plant origin as a coagulation agent (EC No. 889/2008 Annex VIII, Section B -165 166 Processing Aids). 167 168 Japan Agricultural Standard (JAS) for Organic Production Article 4, Table 1, Food Additives permits the use of food additive INS 511, magnesium chloride, and also 169 170 "crude seawater magnesium chloride," for processed foods of plant origin as a coagulating agent or for 171 processed bean products. 172 173 **IFOAM - Organics International** The IFOAM Norms, Appendix 4, Table 1, permit the use of magnesium chloride (INS 511) as an additive 174 and also as a processing and post-harvest handling aid for soybean products only. 175 176 177 178 Evaluation Questions for Substances to be used in Organic Handling 179 180 Evaluation Question #1: Describe the most prevalent processes used to manufacture or formulate the 181 petitioned substance. Further, describe any chemical change that may occur during manufacture or 182 formulation of the petitioned substance when this substance is extracted from naturally occurring plant, 183 animal, or mineral sources (7 U.S.C. § 6502 (21)). 184 185 Magnesium chloride from natural sources 186 Natural commercial sources of magnesium chloride can be classified as (a) sea water; (b) terminal lake 187 brines; (c) subsurface brine deposits; and (d) mineral ore deposits (Butts 2004). Magnesium chloride 188 produced from each of these natural sources is the product of a brine comprising soluble ions of various 189 mineral elements, primarily sodium, potassium, magnesium, calcium, chloride and sulfate. 190
- 191 Sea Water
- 192 Sea water is processed in solar ponds to produce concentrated brines from which specific minerals
- 193 crystallize and are recovered. These specific minerals, called "evaporites," crystallize in a sequence based
- 194 on the concentrations of anions and cations in the brine and their innate solubility in water (Butts 2004).
- 195

196 Table 2. Important evaporites formed during sea water solarization in their order of formation (Butts 2004)

Mineral name	CAS Registry No.	Other names	Chemical formula
Halite	14762-51-7	salt, sodium chloride	NaCl
Epsomite	14457-55-7	Epsom salts, magnesium sulfate	MgSO ₄ · 7H ₂ O
Schoenite	15491-86-8	picromerite	$K_2SO_4 \cdot MgSO_4 \cdot 6H_2O$
Kainite	1318-72-5		4 KCl \cdot 4 MgSO $_{4}$ \cdot 11 H $_{2}$ O
Carnallite	1318-27-0	crackel salt	MgCl ₂ · KCl · 6H ₂ O
Bischofite	13778-96-6	magnesium chloride	MgCl ₂ · 6H ₂ O

197

198 Table 3. Mineral composition of typical sea water and its calculated disposition as evaporites (Lenntech

199 2005).

Ionic species	Typical sea water, per liter		sediment	halite	epsomite	carnallite	bischofite	
Anions	mg	% ,w/w	mEq	mEq	mEq	mEq	mEq	mEq
Chloride (Cl ⁻)	18,980	55.0%	535		-459		-30	-46
Sulfate (SO ₄ ²⁻)	2,649	7.7%	55	-18		-37		

		a a .	-	-			-	-
Bicarbonate (HCO ₃ -)	140	0.4%	2	-2				
Bromide (Br-)	65	0.2%	1					
Borate (BO ₃ ³⁻)	26	0.1%	1					
Fluoride (F-)	1	0.0%	0					
Silicate (SiO ₃ ²⁻)	1	0.0%	0					
Iodide (I-)	<1	0.0%	0					
Total anions			595					
Cations								
Sodium (Na ⁺)	10,556	30.6%	459		-459			
Magnesium (Mg ²⁺)	1,262	3.7%	104			-37	-20	-47
Calcium (Ca ²⁺)	400	1.2%	20	-20				
Potassium (K+)	380	1.1%	10				-10	
Strontium (Sr ²⁺)	13	0.0%	0					
Total cations			593					
Total solids	34,483	(100%)						

200

201 Solar evaporation of over 90+% of the water in sea water creates a saturated solution of sodium chloride.

202 During this phase of solarization, calcium carbonate and calcium sulfate crystallize and become sediment

203 in the initial solar pond. Further evaporation of water leads to crystallization of relatively pure sodium

204 chloride as the mineral "halite." Sodium chloride represents 76.5% of the mass of typical sea water

205 minerals. "Sea salt," the commercial product produced by solar evaporation of the sea water, contains as

206 much sodium chloride (> 98.5%) as mined "salt" does. Salt production from solar ponds represents 14% of

- 207 the total salt produced in the United States (Butts 2004).
- 208

209 Crystallization of sodium chloride from sea water creates magnesium-rich solar brine. As more water is

210 evaporated from solar brine, magnesium combines with any remaining sulfate to form epsomite

- 211 (crystalline magnesium sulfate), or with potassium to form a double sulfate evaporite called schoenite.
- 212

The final evaporites formed depend on the ionic composition of the brine. Potassium and magnesium form a double chloride salt, called carnallite. If the formation of carnallite removes all the potassium from the solar brine, and magnesium is the only remaining cation, magnesium chloride in the form of the mineral

216 bischofite is the last mineral to crystallize since it is the most water-soluble evaporite. Bischofite is the

- 217 natural mineral form of magnesium chloride hexahydrate.
- 218
- 219

220 Terminal lake brines

A terminal lake is a lake where water is flowing in but no water flows out, so that the dissolved salts

concentrate and form brine as the water evaporates. The Great Salt Lake in Utah is a familiar example.

223 Great Salt Lake brine is the primary source of magnesium chloride in North America. The Great Salt Lake

224 contains sodium-magnesium-chloride-sulfate brine with low alkalinity (Domagalski, Orem, and Eugester

1989). Like solarization of seawater, the first evaporite of Great Salt Lake brine to form is halite (sodium

chloride), followed by schoenite (magnesium-potassium sulfate), kainite (potassium chloride-magnesium

sulfate double salt), and carnallite (potassium-magnesium chloride), resulting in a magnesium chloride

brine (Neitzel 1971). Evaporating the water in this magnesium chloride brine creates crude solid
 magnesium chloride.

229

The Dead Sea is also a terminal lake. Magnesium chloride is produced in Israel and Jordan from Dead Sea

brine. Magnesium chloride accounts for about half of Dead Sea solids. The major minerals in Dead Sea

brine are magnesium chloride and potassium chloride, which crystallize as the double salt carnallite (Sadan

234 1979). Carnallite is then treated with water to isolate the magnesium chloride, taking advantage of the fact

- that magnesium chloride is over three times more soluble in water than is potassium chloride.
- 236

237 The sequence of crystallization of the dissolved salts in natural brines during isothermal (solar)

evaporation produces the same minerals found in mineral deposits in prehistoric sea beds (Fezei, Hammi,

and M'nif 2012). Successive evaporation sequences lead to precipitation of sodium chloride (halite) and

Technical Evaluation Report

Magnesium Chloride

			Thandhing/Troccssing
240 241 242	then the potassium chloride-magnesium the mother liquor is cooled to remove m before precipitating the potassium chlor	agnesium sulfate heptahydrate (ep	somite). This step is essential
243	Hammi, and M'nif 2012) developed a pro		
244	be quantitatively removed prior to epsor		
245	calcium sulfate (gypsum). Avoiding loss		
246	content of the brine increases the yield o		
247	used for the production of magnesium c		
248	the source of large amounts of magnesiu		
249	magnesium chloride yields. The chemist	5	1 1 0
250	0	5	
251	MgSO ₄ (in the brine) + CaCl ₂ (s	olution) \rightarrow CaSO ₄ (solid) + Mg	Cl_2 (in the brine)
252	0 - () - (,,,	
253	Magnesium chloride can also be extracte	d from any of these brines in a two	o-step process that bypasses the
254	lengthy solar evaporation steps. Adding	5	
255	precipitates magnesium as magnesium h		
256	containing calcium and chloride) and a s		
257	liquor (Butts 2004). The chemistry of the		1 0
258		•	
259	$MgCl_2$ (liquid) + $Ca(OH)_2$ (solid	d) \rightarrow Mg(OH) ₂ (solid) + CaCl ₂ (in the brine)
260	$Mg(OH)_2$ (solid) + CaCl ₂ (in the	e brine) + $CO_2 \rightarrow MgCl_2 + H_2$	$2O + CaCO_3$ (solid)
261			
262			
263	Subsurface brine deposits		
264	Brine deposits in Midland, Michigan, ha	ve been a source of magnesium ch	loride since the 1890s. The Dow
265	company originally obtained its bromine	e, chlorine, sodium, calcium and m	agnesium from the brine of
266	ancient seas under Midland (Chemical H	Ieritage Foundation 2015).	0
267			
268			
269	Mined mineral deposits		
270	The two major mined mineral sources of		
271	were formed during prehistoric solar eva		. Solution mining of these ore
272	bodies creates a brine that is processed o	n the surface.	
273			
274	Bischofite ore is found as a sea salt conce		
275	ago), with one such zone extending thro		
276	MagnesiumUSA, Inc. has a bischofite mi		0
277	that contains some of the largest, purest,		
278	has a bischofite deposit that is estimated		
279	Bischofite Solution, Magnesium Chloride	5 0 1	
280	Solution also is extracted with water and		
281	2016). Nedmag Industries facilities are lo		
282	and carnallite salts in Northern Europe.	1 11 1	
283	unique bischofite salt layers consist of ve		
284	solution mining by injecting water into t	-	•
285	forming a magnesium chloride brine, wh		
286	liquid or dry form. Bischofite is also four		-
287	Stassfurt, Saxony-Anhalt, Germany, in A	tyrau, Atyrau Province, Kazakhsta	an, and in Peru (Hudson
288	Institute of Mineralogy).		
289	Magnazium chlasida in industral (m. 1)	abofito and complite and to a find	by colution mining and the to
290 291	Magnesium chloride is isolated from bis how sodium bicarbonate is extracted fro		

how sodium bicarbonate is extracted from trona ore in Wyoming. Water is pumped into the ore body to

- dissolve these soluble minerals, forming a brine which is pumped to the surface. Most of the patented
 processes for purification and concentration of these brines rely on water and evaporation, without any
- 295 processes for purification and concentration of these brines rely on water and evaporation, without
- additional chemicals (Jones, Grover, and Silsbee 1917; Neitzel 1971; Dillard, Davis, and Every 1976;

295 296 297 298 299 300 301 302	Groenhof 1982; Nylander 1972). However, because magnesium chloride is soluble in alcohol while potassium chloride is not, several patented processes for separating pure magnesium chloride from carnallite employ a low molecular weight alcohol, such as methanol, to recover pure magnesium chloride (Chassagne 1974; Lambly, Leibson, and Chassagne 1976; Fox, Degen, and Leibson 1977). At the end of the extraction process, the magnesium chloride has not been changed into a different substance, and any alcohol used as an extraction aid has been removed from the final substance.
303	Magnesium chloride formed by chemical synthesis
304 305	Several synthetic processes that create magnesium chloride use hydrochloric acid. Three are described by the FDA at 21 CFR 184.1426:
306	 reaction of magnesium oxide with hydrochloric acid,
307 308	 treatment of magnesium ammonium chloride hexahydrate with hydrochloric acid, and dissolution of magnesium oxide, hydroxide, or carbonate in aqueous hydrochloric acid.
309	
310	Other synthetic pathways include:
311	 action of hydrochloric acid on magnesium oxide or hydroxide, especially the hydroxide, when
312	precipitated from seawater or Great Salt Lake brine by addition of calcium (Lewis 1997a), and
313	 as a by-product in the manufacture of titanium (Jackson et al. 2000).
314	
315	
316	Evaluation Question #2: Discuss whether the petitioned substance is formulated or manufactured by a
317	chemical process, or created by naturally occurring biological processes (7 U.S.C. § 6502 (21)). Discuss
318	whether the petitioned substance is derived from an agricultural source.
319 320	Two magnetium chlorida containing accounties, compallite and high of its are greated by the colorization of
320 321	Two magnesium chloride-containing evaporites, carnallite and bischofite, are created by the solarization of sea water or natural brines, which is a naturally occurring process. Carnallite and bischofite also occur as
321 322	mineral deposits that formed naturally over millions of years in salt lakes. Solar evaporation and
323	crystallization are considered physical (not chemical) processes.
323 324	crystallization are considered physical (not chemical) processes.
325	The process by Fezei et al. that removes sulfate from terminal lake brines by adding calcium chloride to
326	precipitate calcium sulfate is a chemical process that produces additional magnesium chloride.
327	precipitate calcium suitate is a chemical process and produces additional magnesiant enforme.
328	The two-step process of extracting magnesium chloride from terminal lake brines involves adding lime
329	(calcium hydroxide) to precipitate magnesium hydroxide, and then mixing the solid magnesium hydroxide
330	with the brine and carbon dioxide to generate pure magnesium chloride liquor. This process is similar to
331	how citric acid produced by microbial fermentation is isolated. Calcium hydroxide is added to the citric
332	acid-containing culture to precipitate citric acid as calcium citrate. Citric acid is recovered by reacting
333	calcium citrate with sulfuric acid. Calcium precipitates as calcium sulfate and citrate is converted to citric
334	acid. Citric acid produced in this manner is classified as a nonsynthetic substance at §205.605(a).
335	
336	Several patented processes for purifying magnesium chloride sourced from solution mining rely on
337	synthetic alcohols, such as methanol, to take advantage of the high alcohol solubility of magnesium
338	chloride (Chassagne 1974; Lambly, Leibson, and Chassagne 1976; Fox, Degen, and Leibson 1977).
339	
340	Synthesis of magnesium chloride by the reaction of a magnesium compound such as the oxide, hydroxide,
341	or carbonate with hydrochloric acid is a chemical process, which involves chemical reaction of an acid and
342	an alkali to form a salt.
343	
344	Agricultural vs. Nonagricultural sources
345	Magnesium chloride made directly or indirectly from sea water, brine, or mineral ore is considered to be
346	derived from nonagricultural sources.
347	
348	

349	Evaluation Question #3: If the substance is a synthetic substance, provide a list of nonsynthetic or
350 351	natural source(s) of the petitioned substance (7 CFR § 205.600 (b) (1)).
352	Magnesium chloride produced by reacting a magnesium compound or mineral with hydrochloric acid is
353	considered synthetic. This is because the substance undergoes a chemical change so that it is chemically or
354	structurally different from how it naturally occurs in the source material.
355	Networks of a construction where the distribution Operation 1 and the substance on the
356	Natural sources of magnesium chloride are described in Evaluation Question 1, and the substance can be
357	extracted by various means which may affect the classification of the final substance as synthetic or
358	nonsynthetic. Evaporation and crystallization are physical processes which do not result in chemical
359	change. Magnesium chloride extracted from brine by the two-step process involving calcium hydroxide
360	and carbon dioxide is not chemically or structurally different from how it naturally occurs in the source
361	material.
362	
363	
364	Evaluation Question #4: Specify whether the petitioned substance is categorized as generally
365	recognized as safe (GRAS) when used according to FDA's good manufacturing practices (7 CFR §
366	205.600 (b)(5)). If not categorized as GRAS, describe the regulatory status.
367	
368	Magnesium chloride hexahydrate is affirmed as GRAS at 21 CFR 184.1426, and is allowed by the FDA as a
369	flavoring agent and adjuvant and as a nutrient supplement.
370	
371	
372	Evaluation Question #5: Describe whether the primary technical function or purpose of the petitioned
373	substance is a preservative. If so, provide a detailed description of its mechanism as a preservative (7
374	CFR § 205.600 (b)(4)).
375	
376	Magnesium chloride does not function as a preservative.
377	
378	
379	Evaluation Question #6: Describe whether the petitioned substance will be used primarily to recreate
380	or improve flavors, colors, textures, or nutritive values lost in processing (except when required by law)
381	and how the substance recreates or improves any of these food/feed characteristics (7 CFR § 205.600
382	(b)(4)).
383	
384	Magnesium chloride is not used to recreate or improve characteristics lost in processing. Magnesium
385	chloride is used to create and modify the texture of the soy bean curd product, tofu. Magnesium chloride is
386	a salt of the essential nutrient magnesium, and is specifically permitted as a nutrient supplement at 21 CFR
387	184.1426. Nutritionally complete products intended as the sole item in the diet of human infants frequently
388	contain magnesium chloride as a source of both magnesium and chloride as required at 21 CFR 107.100.
389	
390	
391	<u>Evaluation Question #7</u> : Describe any effect or potential effect on the nutritional quality of the food or
392	feed when the petitioned substance is used (7 CFR § 205.600 (b)(3)).
393	
394	Adding magnesium chloride to any food or feed will increase the amounts of the essential mineral
395	nutrients magnesium and chloride. Severe magnesium deficiency is rare in the United States, but
396	habitually low intakes are commonplace. Magnesium depletion has cardiovascular effects, including
397	increased blood pressure, atrial fibrillation, ventricular tachycardia and fibrillation, and increased risk of
398	cardiac ischemia.
399	
400	
401	Evaluation Question #8: List any reported residues of heavy metals or other contaminants in excess of
402	FDA tolerances that are present or have been reported in the petitioned substance (7 CFR § 205.600
403	(b)(5)).
404	

405 Magnesium chloride hexahydrate for food processing meets the Food Chemicals Codex heavy metal specification for lead of not more than 4 parts per million (U.S. Pharmacopeia 2010). The JECFA 406 specification for lead in magnesium chloride hexahydrate is not more than 2 ppm (JECFA 2004). 407 408 409 Evaluation Question #9: Discuss and summarize findings on whether the manufacture and use of the 410 411 petitioned substance may be harmful to the environment or biodiversity (7 U.S.C. § 6517 (c) (1) (A) (i) 412 and 7 U.S.C. § 6517 (c) (2) (A) (i)). 413 The historical process of solar evaporation of sea water to obtain salt and additional minerals such as 414 415 magnesium chloride creates saline ponds and infertile soil. Solar salt ponds have been reused for several 416 millennia in the Eastern Mediterranean so that the environmental damage is localized. With respect to 417 terminal lakes such as the Great Salt Lake, the major environmental threat here is not related to mineral 418 extraction operations; it is the reduction of water flow into this terminal lake caused by agricultural and 419 other diversions (Wurtsbaugh et al. 2016). Winds blowing over dry lake beds cause dust storms and urban 420 pollution. 421 422 An environmental risk with solution mining is surface subsidence, as the underlying mineral is dissolved 423 and removed, effectively creating a cavern. 424 425 Several patented processes for the separation of sea minerals employ volatile synthetic low molecular 426 weight alcohols (primarily methanol) to extract magnesium chloride. Solution mining with water 427 containing methanol would result in release of methanol to the environment. However, a comprehensive 428 review of chemical production from natural brines (Butts 2004) makes no mention of methanol or other 429 alcohols in solution mining, suggesting that these processes have little or no commercial application. 430 431 Methanol is released to the environment during industrial uses and naturally from volcanic gases, 432 vegetation, and microbes. Exposure may occur from ambient air and during the use of solvents. Acute 433 (short-term) or chronic (long-term) exposure of humans to methanol by inhalation or ingestion may result 434 in blurred vision, headache, dizziness, and nausea. No information is available on the reproductive, developmental, or carcinogenic effects of methanol in humans. Birth defects have been observed in the 435 436 offspring of rats and mice exposed to methanol by inhalation. The EPA has not classified methanol with 437 respect to carcinogenicity (EPA 2000). 438 439 Evaluation Question #10: Describe and summarize any reported effects upon human health from use of 440 the petitioned substance (7 U.S.C. § 6517 (c) (1) (A) (i), 7 U.S.C. § 6517 (c) (2) (A) (i)) and 7 U.S.C. § 6518 441 442 (m) (4)). 443 444 Magnesium chloride is used in medicine (e.g., parenteral solutions) as a source of soluble magnesium ions, 445 which are essential for many cellular activities. It has also been used as a cathartic. JECFA has established an Acceptable Daily Intake (ADI) for magnesium chloride as "no limit" (JECFA 1980). 446 447 448 449 Evaluation Question #11: Describe any alternative practices that would make the use of the petitioned 450 substance unnecessary (7 U.S.C. § 6518 (m) (6)). 451 452 Use of a coagulant is necessary for tofu processing. Tofu comprises the curdled globular proteins of 453 soybeans. Soybeans are made into soymilk and the coagulant is added to curdle the globulins. Potential 454 alternative practices, including use of dairy cultures and animal enzymes, such as rennet, that curdle the 455 proteins of ruminant milk, have no effect on soy globulins (Institute of Food Technologists 2010) and 456 would not be suitable for vegans or vegetarians. 457 458

459 460 461 462	<u>Evaluation Question #12:</u> Describe all natural (non-synthetic) substances or products which may be used in place of a petitioned substance (7 U.S.C. § 6517 (c) (1) (A) (ii)). Provide a list of allowed substances that may be used in place of the petitioned substance (7 U.S.C. § 6518 (m) (6)).
462 463 464 465 466 467 468	Magnesium chloride is a prime candidate mineral salt for supplementing a human food with soluble magnesium. Few food grade magnesium salts possess good solubility and acceptable taste profiles and are included on the National List. A human requirement for preformed sulfate has not been established, whereas chloride is known to be an essential nutrient (Institute of Medicine 2005), so magnesium chloride is a more acceptable source of this nutrient for formulated products than is magnesium sulfate.
469 470 471 472	A natural mineral that provides nutritionally available magnesium is dolomite, a calcium carbonate- magnesium carbonate. Dolomite is insoluble in water so it is unsuitable for nutritional fortification of liquid products and for making tofu, but it can be useful in some solid and dry food products.
473 474 475 476 477 478 479	For tofu processing, four basic types of coagulants are used: chloride types (such as magnesium chloride and calcium chloride), sulfate types (such as calcium sulfate and magnesium sulfate), glucono delta- lactone, and acidic agents (such a citrus juices, vinegar, or lactic acid sources) (Shurtleff and Aoyagi 2000). Each of these has unique effects on the texture of tofu (deMan, deMan, and Gupta 1986). Calcium chloride, calcium sulfate, glucono delta-lactone, and lactic acid and citric acid are all classified as nonsynthetic on §205.605(a).
480 481 482 483 484 485 486 487 488	Calcium sulfate, calcium chloride, magnesium chloride, and glucono-delta-lactone are the most frequently used coagulants for precipitating soy protein curd to make tofu (Arii and Takenaka 2013; Shurtleff and Aoyagi 1975). Glucono delta-lactone is an effective coagulant used to make tofu, especially "silken" tofu. The Japanese typically use "nigari," the solids remaining in salt water after sea salt and magnesium sulfate crystallize, which contains as much as 90% magnesium chloride, as one component of the coagulants. They then use calcium chloride or calcium sulfate as a second component, since too much calcium and too much magnesium each can adversely impact tofu texture (Arii and Takenaka 2013). Magnesium sulfate has a bitter, saline taste that limits its use as a total replacement for magnesium chloride.
489 490 491 492 493 494 495	Various acidic substances can curdle soy protein. Jeong et al. (Jeong et al. 2004) developed a method for preparing bean curd containing lactic acid for the Korean market by preparing bean soup using soybeans, cooling the bean soup, and adding a lactic acid-containing bacterial culture to the bean soup to curdle the bean protein, thus forming bean curd. Citrus juices, particularly lemon juice, are effective coagulants. Tofu made with lemon juice may be too tart for some tastes (Chang 2006), but it is great tasting for others (Obatolu 2008).
496 497 498 499	<u>Evaluation Information #13:</u> Provide a list of organic agricultural products that could be alternatives for the petitioned substance (7 CFR § 205.600 (b) (1)).
500 501 502 503 504	Juice from organic lemons can be used as a coagulant for tofu (Sanjay et al. 2008). However, each coagulant has unique effects on tofu taste and texture. Tofu made with lemon juice may be too tart for some tastes (Chang 2006), but it is great tasting for others (Obatolu 2008).
505	References
506 507 508 509 510 511	 Aikawa, J.K. 1991. "Magnesium compounds." In <i>Metals and Their Compounds in the Environment</i>, edited by E. Merian, 1025-1034. Weinheim, Germany: VCH. Arii, Yasuhiro, and Yasuyuki Takenaka. 2013. "Magnesium Chloride Concentration-Dependent Formation of Tofu-Like Precipitates with Different Physicochemical Properties." <i>Bioscience, Biotechnology, and Biochemistry</i> no. 77 (5):928-933. doi: <u>http://doi.org/10.1271/bbb.120864</u>.

512 Budavari, Susan. 1996. *The Merck Index*. Twelfth Edition ed. Whitehouse Station, NJ: Merck & Co., Inc.

513	Butts, David. 2004. "Chemicals from brine." In Kirk-Othmer Encyclopedia of Chemical Technology, edited by Kirk-
514	Othmer, 784-803. Hoboken, New Jersey: John WIley & Sons.
515	Chang, Sam K. C. 2006. "Soymilk and Tofu Manufacturing." In Handbook of Food Products Manufacturing, 1063-
516	1089. John Wiley & Sons, Inc.
517	Chassagne, Pierre J. 1974. Recovery of magnesium chloride hexahydrate from carnallite ore. U.S. Patent 3,833,709:
518	Bechtel International Company.
519	Chemical Heritage Foundation. Herbert Henry Dow 2015 [cited 28 October 2016. Available from
520	https://www.chemheritage.org/historical-profile/herbert-henry-dow.
521	deMan, J. M., L. deMan, and S. Gupta. 1986. "Texture and microstructure of soybean curd (tofu) as affected by
522	different coagulants." Food Microstructure no. 5 (1):83-89.
523	Dillard, D.S., Jr.,, J.Gilbert Davis, II,, and Richard L. Every. 1976. Method of solution mining potassium chloride
524	from subterranean deposits. U.S. Patent 3,994,531: Continental Oil Compnay.
525	Domagalski, J.L., W.H. Orem, and H.P. Eugester. 1989. "Organic geochemistry and brine composition in Great Salt,
526	Mono, and Walker Lakes." <i>Geochimica et Cosmochimica Acta</i> no. 53 (11):2857-2872.
527	EPA. 1998. Prevention, Pesticides and Toxic Substances; Status of Pesticides in Registration, Reregistration, and
528	Special Review. Washington DC.
529	EPA. 2000. Health Effects Notebook for Hazardous Air Pollutants: Methanol. edited by EPA. Washington DC
530	Fezei, Radouanne, Halim Hammi, and Adel M'nif. 2012. "Extractive process for preparing high purity magnesium
531	chloride hexahydrate." Chemical Industry & Chemical Engineering Quarterly no. 18 (1):83-88.
532	Fox, Joseph M., III,, Bruce D. Degen, and Irving Leibson. 1977. Process for the recovery of magnesium chloride
533	hydrate and potassium chloride from carnallite and bischofite. U.S. PTO 4,056,599: Bechtel International
534	Corporation.
535	Groenhof, Hendrik C. 1982. Method for purification and concentration of MgCl ₂ -brines. U.S. Patent 4,341,752: Norsk
536	Hydro a.s.
537 538	Hudson Institute of Mineralogy. 2016. <i>Bischofite</i> , 27 October 2016 [cited 20 August 2016]. Available from
	http://www.mindat.org/min-681.html.
539 540	Institute of Food Technologists. 2010. Food Chemistry Experiments Unit 3. Proteins. In <i>IFT Experiments in Food Science Series</i> : IFT.org.
540 541	Institute of Medicine. 1997. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and
541 542	<i>Fluoride</i> . Washington, DC: National Academy Press.
542 543	2005. Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate. Washington, DC: The
543 544	National Academies Press.
545	Jackson, L. C., S. P. Levings, M. L. Maniocha, C. A. Mintmier, A. H. Reyes, P. E. Scheerer, D. M. Smith, M. T.
546	Wajer, M. D. Walter, and J. T. Witkowski. 2000. "Magnesium Compounds." In <i>Kirk-Othmer Encyclopedia</i>
547	of Chemical Technology. New York, NY: John Wiley & Sons, Inc.
548	JECFA. 1980. Evaluation of certain food additives. In <i>Joint FAO/WHO Expert Committee on Food Additives 23rd</i>
549	<i>Report</i> . Geneva: World Health Organization.
550	
551	on Food Additive 63rd Meeting. Geneva, Switzerland: FAO/WHO.
552	Jeong, Ga-Jin, J. N. Kim, P.H. Kim, JW. Ryu, and HU. Han. 2004. Bean curd containing lactic fermenting bacteria
553	culture fluid and a method for preparing the same, and beverage containing the same. U.S. Patent No.
554	6,756,066: Kim, John N.
555	Jones, Louis C., Fred L. Grover, and Joseph L. Silsbee. 1917. Process of recovering potassium and magnesium
556	chlorides from natural deposits. U.S. Patent 1,215,546: Solvay Process Company.
557	Lambly, Charles A. R., Irving Leibson, and Pierre J. Chassagne. 1976. Method for selectively extracting magnesium
558	chloride hexahydrate from magnesium chloride hexahydrate bearing materials in situ by solution mining.
559	U.S. Patent 3,998,492: Bechtel International Corporation.
560	Lewis, R. J. Sr. 1997a. Hawley's Condensed Chemical Dictionary. edited by R. J. Sr. Lewis. New York, NY: John
561	Wiley & Sons, Inc.
562	Lewis, R.J. Sr. 1997b. Hawley's Condensed Chemical Dictionary. edited by R.J. Lewis, Sr. New York, NY: John
563	Wiley & Sons, Inc.
564	MagnesiumUSA, Inc. 2016. [cited 20 August 2016]. Available from http://www.magnesiumusa.com/.
565	Lenntech. 2005. Composition of seawater. Available from http://www.lenntech.com/composition-seawater.htm.
566	Neitzel, Ulrich E. G. 1971 Solar pond system for the production of concentrated brines utilizing plural serial solar
567	subzones. U.S. Patent 3,615,259: Great Salt Lake Minerals and Chemicals Corporation.
568	Nylander, Alfred F. 1972 Production of potassium chloride from carnallitic salts. U.S. 3,642,454: Kaiser Aluminum &
569	Chemical Corp.
570	NOSB. 1995a. "Technical Advisory Panel Report: Magnesium Chloride - Processing." Washington DC: USDA-
571	AMS-NOP.

572	https://www.ams.usda.gov/sites/default/files/media/MGCL13%20technical%20advisory%20panel%20report
573	%2095.pdf
574	NOSB. 1995b. "Minutes of the National Organic Standards Bard Meeting, October 31 - November 4, 1995, Austin
575	TX." Washington DC: USDA-AMS-NOP.
576	NOSB. 1999. "Magnesium chloride - Processing." NOSB Materials Database. Washington DC: USDA-AMS-NOP.
577	Obatolu, Veronica A. 2008. "Effect of different coagulants on yield and quality of tofu from soymilk." European
578	Food Research and Technology no. 226 (3):467-472. doi: 10.1007/s00217-006-0558-8.
579	Sadan, Abraham. 1979. Process for the production of potassium chloride and magnesium chloride from carnallite.
580	U.S. Patent 4,140,747: Israel Chemicals Ltd.
581	Sanjay, K. R., R. Subramanian, Amudha Senthil, and G. Vijayalakshmi. 2008. "Use of Natural Coagulants of Plant
582	Origin in Production of Soycurd (Tofu)." International Journal of Food Engineering no. 4 (1):1-13. doi:
583	10.2202/1556-3758.1351.
584	Shurtleff, W., and A. Aoyagi. 1975. The Book of Tofu: Food for Mankind. Kanagawa-Ken, Japan: Autumn Press.
585	. 2000. Tofu & Soymilk Production: The Book of Tofu, Volume II - A Craft and Technical Manual. 3rd ed.
586	Lafayette, California: Soyfoods Center.
587	U. S. Pharmacopeia. 2010. Food Chemicals Codex (FCC) 7th Edition. 7th ed. Rockville, MD: United States
588	Pharmacopeial Convention.
589	USDA Agricultural Marketing Service. 2000. "National Organic Program Final Rule." Federal Register 65(246):
590	80548-80684. Washington DC: USDA-AMS-NOP. December 21, 2000. http://www.gpo.gov/fdsys/pkg/FR-
591	2000-12-21/pdf/00-32257.pdf
592	Wurtsbaugh, Wayne, Craig Miller, Sarah Null, Peter Wilcock, Maura Hahnenberger, and Frank Howe. 2016. Impacts
593	of water development on Great Salt Lake and the Wasatch Front. Logan, Utah: Utah State University.
594	

595